Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36235935

RESUMO

Mantis shrimp (Oratosquilla nepa) exoskeleton, a leftover generated after processing, was used as a starting material for chitosan (CS) production. CS was extracted with different deacetylation times (2, 3 and 4 h), termed CS−2, CS−3 and CS−4, respectively, and their characteristics and antimicrobial and film properties with agarose (AG) were investigated. Prolonged deacetylation time increased the degree of deacetylation (DDA: 73.56 ± 0.09−75.56 ± 0.09%), while extraction yield (15.79 ± 0.19−14.13 ± 0.09%), intrinsic viscosity (η: 3.58 ± 0.09−2.97 ± 0.16 dL/g) and average molecular weight (Mν: 1.4 ± 0.05−1.12 ± 0.08 (×106 Da)) decreased (p < 0.05). FTIR spectra of extracted CS were similar to that of commercial CS. Among all the CS samples prepared, CS−3 had the best yield, DDA, Mν and antimicrobial activity. Therefore, it was chosen for the development of composite films with AG at different ratios (CS−3/AG; 100/0, 75/25, 50/50, 25/75 and 0/100). As the proportion of AG increased, the tensile strength (29.96 ± 1.80−89.70 ± 5.08 MPa) of the composite films increased, while thickness (0.056 ± 0.012−0.024 ± 0.001 mm), elongation at break (36.52 ± 1.12−25.32 ± 1.23%) and water vapor permeability (3.56 ± 0.10−1.55 ± 0.02 (×10−7 g m m−2 s−1 Pa−1)) decreased (p < 0.05). Moreover, lightness of the films increased and yellowness decreased. CS−3/AG (50/50) composite film exhibited high mechanical and barrier properties and excellent compatibility according to FTIR and SEM analyses. According to these finding, mantis shrimp exoskeleton could be used to produce CS. The developed bio-composite film based on an appropriate ratio (50/50) of CS−3 and AG has potential for being used as food packaging material.

2.
Foods ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35206090

RESUMO

The optimization of antioxidant and anti-tyrosinase activity during jellyfish hydrolysate preparation was studied using a response surface methodology (RSM) with a face-centered composite design. The influence of the hydrolysis duration and the enzyme concentration on the IC50 of the DPPH and ABTS radical scavenging activity, ferric-reducing antioxidant power (FRAP), the degree of hydrolysis (DH), yield, and the IC50 value of tyrosinase inhibitory activity were determined. The optimum conditions for the production of jellyfish hydrolysate using alcalase (JFAH), flavourzyme (JFFH), or papain (JFPH) were achieved at hydrolysis times of 360, 345, or 360 min, respectively, and at an enzyme concentration of 5.0%. JFFH had the highest antioxidant and tyrosinase inhibitory activity. JFAH, JFFH, and JFPH concentrations of 2.5 mg/mL resulted in HaCaT cells (IC80) having a survival rate of 80%. The amino acid profile of JFFH contained about 43% hydrophobic and 57% hydrophilic amino acids, comprising Gly, Cys, Glx, Asx, which were dominant. The isolation of a peptide fraction from JFFH was carried out using ultrafiltration membranes (10, 3, and 1 kDa) and gel filtration chromatography. Fraction-III (1-3 kDa) showed the highest antioxidative and tyrosinase inhibitory activity.

3.
J Food Sci Technol ; 52(10): 6182-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26396365

RESUMO

Microbiological, chemical and sensory changes of sea bass slices wrapped with fish protein isolate (FPI)/fish skin gelatin (FSG) films incorporated with 3 % ZnO nanoparticles (ZnONP) (w/w, based on protein content) and 100 % basil leaf essential oil (BEO) (w/w, based on protein content) during storage of 12 days at 4 °C were investigated. Sea bass slices wrapped with FPI/FSG-ZnONP-BEO film had the lowest growth of psychrophilic bacteria, lactic acid bacteria and spoilage microorganisms including Pseudomonas , H2S-producing bacteria and Enterobacteriaceae throughout storage of 12 days in comparison with those wrapped with FPI/FSG-BEO, FPI/FSG-ZnONP, FPI/FSG film, polypropylene film (PP film) and the control (without wrapping), respectively (P < 0.05). Lowered increases in pH, total volatile base, peroxide value and TBARS value were found in FPI/FSG-ZnO-BEO film wrapped samples, compared with others (P < 0.05). Sensory evaluation revealed that shelf-life of sea bass slices was longest for samples wrapped with FPI/FSG-ZnONP-BEO film (12 days), as compared to the control (6 days) (P < 0.05).

4.
J Food Sci Technol ; 52(10): 6194-205, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26396366

RESUMO

Antioxidant activities of protein hydrolysate prepared from Nile tilapia protein isolate using Alcalase (HA), Alcalase followed by papain (HAPa) and their Sephadex G-25 fractions (FHA and FHAPa) were investigated in both chemical and cellular based models. Amongst all samples, FHAPa showed the highest chemical antioxidant activities, however it had no metal chelation activity. Cellular antioxidant ability of HA, HAPa and their fractions against H2O2 and AAPH induced oxidative damage of HepG2 cell and DNA were tested. When cells were pretreated with all hydrolysates or fractions at different concentrations (0.5-2 mg/mL) in the absence and presence of 50 µM Trolox, cell viability was in the range of 91.10-111.40 %. However, no difference in cell viability was observed among samples having various concentrations (P > 0.05). Cell reactive oxygen species (ROS) generation as mediated by H2O2 and AAPH decreased with treatment of hydrolysates or their fractions, especially in combination with 50 µM Trolox. FHAPa effectively inhibited H2O2 and peroxyl radical induced DNA scission in a dose dependent manner. Therefore, Nile tilapia protein hydrolysates could serve as a functional food ingredient.

5.
J Food Sci Technol ; 52(6): 3336-49, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26028714

RESUMO

Antioxidant and sensory properties of Nile tilapia protein hydrolysates prepared by one- and two-step hydrolysis using commercial proteases were investigated. Hydrolysates prepared using single protease including Alcalase (HA), Flavourzyme (HF), Protamex (HPr) and papain (HPa) had increases in antioxidant activities as the degree of hydrolysis (DH) increased up to 40 % (P < 0.05). Amongst all hydrolysates, HA having 40 % DH showed the highest antioxidant activities. When HA was further hydrolysed by papain, the resulting hydrolysate (HAPa) exhibited the highest antioxidant activities for all assays tested (P < 0.05). ABTS radical scavenging activity and metal chelating of HAPa generally remained constant in a wide pH range (1-11) and during heating at 30-100 °C. Both activities increased in the simulated gastrointestinal tract model system, especially in intestine condition. HAPa (100-1,000 ppm) could retard lipid oxidation in ß-carotene-linoleate and lecithin-liposome model systems in a dose dependent manner. Peptides in both HA and HAPa with molecular weight of 513 Da and 1,484 Da possessed the strongest ABTS radical scavenging activity and metal chelating activity, respectively. The amino acid profile of both HA and HAPa contained a high amount of hydrophobic amino acids (38.26-38.85 %) and had glutamic acid/glutamine, lysine and aspartic acid/asparagine as the dominant amino acids. However, HAPa showed a higher acceptability than did HA, owing to the lower bitterness. Therefore, the use of Alcalase in combination with papain for hydrolysis of protein isolate rendered the hydrolysate with antioxidant properties and reduced bitterness, which could serve as the functional supplement.

6.
J Sci Food Agric ; 94(2): 219-26, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23696369

RESUMO

BACKGROUND: Although protein isolates have been proven as a potent raw material for protein hydrolysate preparation, the fishy odour associated with lipid oxidation is still detected. The remaining haemoglobin (Hb) in protein isolates can effectively induce lipid oxidation, leading to the formation of fishy odour in the resulting hydrolysate. The aim of this study was to elucidate the impact of Hb with different forms, oxyhaemoglobin (oxy-Hb) and methaemoglobin (met-Hb), on lipid oxidation and the development of fishy odour during hydrolysis of protein isolates. RESULTS: During hydrolysis of protein isolate up to 120 min, non-haem iron content, peroxide value and thiobarbituric acid reactive substances slightly increased (P < 0.05). When oxy-Hb or met-Hb was incorporated, the marked increases in all parameters were observed, especially within the first 60 min of hydrolysis. The higher increases were obtained with the latter, suggesting that met-Hb was more pro-oxidative than oxy-Hb. However, no differences in degree of hydrolysis of all samples were observed (P > 0.05). The marked increases in the b*, ΔE*, ΔC* values, fishy odour/flavour and volatile compounds were also found in the resulting hydrolysate containing either oxy-Hb or met-Hb. CONCLUSION: Hb, particularly met-Hb, induced lipid oxidation and the development of a fishy odour/flavour in fish protein hydrolysate.


Assuntos
Ciclídeos/metabolismo , Hemoglobinas/metabolismo , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Odorantes , Hidrolisados de Proteína/metabolismo , Alimentos Marinhos/análise , Animais , Cor , Proteínas de Peixes/metabolismo , Hemoglobina Falciforme/metabolismo , Oxirredução , Paladar , Substâncias Reativas com Ácido Tiobarbitúrico , Compostos Orgânicos Voláteis/metabolismo
7.
Food Chem ; 142: 210-6, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24001833

RESUMO

Chemical compositions and muddy compounds in dorsal and ventral muscles of Nile tilapia and broadhead catfish were comparatively studied. On a dry weight basis, Nile tilapia was rich in protein (93.1-93.8%), whilst broadhead catfish contained protein (55.2-59.5%) and lipid (36.6-42.4%) as the major constituents. Ventral portion had higher lipid or phospholipid contents with coincidentally higher geosmin and/or 2-methylisoborneol (2-MIB) contents. Geosmin was found in mince of Nile tilapia and broadhead catfish at levels of 1.5 and 3.2µg/kg, respectively. Broadhead catfish mince had 2-MIB at level of 0.8µg/kg, but no 2-MIB was detected in Nile tilapia counterpart. When pre-washing and alkaline solubilisation were applied for preparing protein isolate (PI), lipid and phospholipid contents were lowered with concomitant decrease in geosmin and 2-MIB contents. Protein hydrolysate produced from PI had a lighter colour and a lower amount of muddy compounds, compared with that prepared from mince. Therefore, PI from both Nile tilapia and broadhead catfish could serve as the promising proteinaceous material, yielding protein hydrolysate with the negligible muddy odour and flavour.


Assuntos
Produtos Pesqueiros/análise , Odorantes/análise , Hidrolisados de Proteína/química , Paladar , Animais , Canfanos/análise , Peixes-Gato , Ciclídeos , Proteínas de Peixes/química , Manipulação de Alimentos , Humanos , Naftóis/análise
8.
Food Chem ; 135(4): 2474-82, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22980831

RESUMO

Impact of different pretreatments on chemical compositions of Indian mackerel mince was studied. Mince prepared using washing/membrane removal/alkaline solubilisation process (W-MR-Al) contained the lowest remaining myoglobin and haem iron content and also showed the lowest total lipid and phospholipid contents. When mince and W-MR-Al were hydrolysed using Alcalase for up to 120 min, a higher degree of hydrolysis (DH) was found in W-MR-Al after 30 min of hydrolysis. Furthermore, hydrolysate from W-MR-Al had lower peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and non-haem iron content throughout hydrolysis period (P<0.05). When hydrolysate powder produced from mince and W-MR-Al (0-0.3%w/v) were fortified in milk, the former resulted in the lower likeness score (P<0.05) at all levels used. The addition of the latter, for up to 0.2%, had no effect on likeness of all attributes, compared with milk without fortification (P>0.05). Therefore, the appropriate pretreatment of mince yielded hydrolysate with lower fishy odour.


Assuntos
Proteínas de Peixes/química , Manipulação de Alimentos/métodos , Peroxidação de Lipídeos , Músculo Esquelético/química , Odorantes/prevenção & controle , Hidrolisados de Proteína/química , Alimentos Marinhos/análise , Animais , Odorantes/análise , Perciformes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA