Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lasers Surg Med ; 56(2): 186-196, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38226735

RESUMO

BACKGROUND AND OBJECTIVES: The use of ablative fractional lasers to enhance the delivery of topical drugs through the skin is known as laser-assisted drug delivery. Here, we compare a novel 3050/3200 nm difference frequency generation (DFG) fiber laser (spot size: 40 µm) to a commercially used CO2 laser (spot size: 120 µm). The objective is to determine whether differences in spot size and coagulation zone (CZ) thickness influence drug uptake. MATERIALS AND METHODS: Fractional ablation was performed on ex-vivo human abdominal skin with the DFG (5 mJ) and CO2 (12 mJ) lasers to generate 680 µm deep lesions. To evaluate drug delivery, 30 kDa encapsulated fluorescent dye was topically applied to the skin and histologically analyzed at skin depths of 100, 140, 200, 400, and 600 µm. Additionally, transcutaneous permeation of encapsulated and 350 Da nonencapsulated dye was assessed using Franz Cells. RESULTS: The DFG laser generated smaller channels (diameter: 56.5 µm) with thinner CZs (thickness: 22.4 µm) than the CO2 laser (diameter: 75.9 µm, thickness: 66.8 µm). The DFG laser treated group exhibited significantly higher encapsulated dye total fluorescence intensities after 3 h compared to the CO2 laser treated group across all skin depths (p < 0.001). Permeation of nonencapsulated dye was also higher in the DFG laser treated group vs the CO2 laser treated group after 48 h (p < 0.0001), while encapsulated dye was not detected in any group. CONCLUSION: The DFG laser treated skin exhibited significantly higher total fluorescence uptake compared to the CO2 laser. Additionally, the smaller spot size and thinner CZ of the DFG laser could result in faster wound healing and reduced adverse effects while delivering similar or greater amount of topically applied drugs.


Assuntos
Dióxido de Carbono , Lasers de Gás , Humanos , Administração Cutânea , Dióxido de Carbono/farmacologia , Preparações Farmacêuticas , Pele/patologia , Lasers de Gás/uso terapêutico
2.
Lasers Surg Med ; 54(6): 851-860, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395696

RESUMO

BACKGROUND AND OBJECTIVES: Mid-infrared (IR) ablative fractional laser treatments are highly efficacious for improving the appearance of a variety of dermatological conditions such as photo-aged skin. However, articulated arms are necessary to transmit the mid-IR light to the skin, which restricts practicality and clinical use. Here, we have assessed and characterized a novel fiber laser-pumped difference frequency generation (DFG) system that generates ablative fractional lesions and compared it to clinically and commercially available thulium fiber, Erbium:YAG (Er:YAG), and CO2 lasers. MATERIALS AND METHODS: An investigational 20 W, 3050/3200 nm fiber laser pumped DFG system with a focused spot size of 91 µm was used to generate microscopic ablation arrays in ex vivo human skin. Several pulse energies (10-70 mJ) and pulse durations (2-14 ms) were applied and lesion dimensions were assessed histologically using nitro-blue tetrazolium chloride stain. Ablation depths and coagulative thermal damage zones were analyzed across three additional laser systems. RESULTS: The investigational DFG system-generated deep (>2 mm depth) and narrow (<100 µm diameter) ablative lesions surrounded by thermal coagulative zones of at least 20 µm thickness compared to 13, 40, and 320 µm by the Er:YAG, CO2 , and Thulium laser, respectively. CONCLUSION: The DFG system is a small footprint device that offers a flexible fiber delivery system for ablative fractional laser treatments, thereby overcoming the requirement of an articulated arm in current commercially available ablative lasers. The depth and width of the ablated microcolumns and the extent of surrounding coagulation can be controlled; this concept can be used to design new treatment procedures for specific indications. Clinical improvements and safety are not the subject of this study and need to be explored with in vivo clinical studies.


Assuntos
Dermatologia , Terapia a Laser , Lasers de Gás , Lasers de Estado Sólido , Envelhecimento da Pele , Idoso , Dióxido de Carbono , Humanos , Terapia a Laser/métodos , Lasers de Gás/uso terapêutico , Lasers de Estado Sólido/uso terapêutico , Pele/patologia , Túlio
3.
J Biomed Opt ; 18(11): 111406, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23856834

RESUMO

Fractional laser ablation is one of the relatively safe and minimally invasive methods used to administer micro- and nanoparticles into the skin at sufficiently large depth. In this article, we present the results of delivery of TiO2 nanoparticles and Al2O3 microparticles into skin. Fractional laser microablation of skin was provided by a system based on a pulsed Er:YAG laser with the following parameters: the wavelength 2940 nm, the pulse energy 3.0 J, and the pulse duration 20 ms. Ex vivo and in vivo human skin was used in the study. The suspensions of titanium dioxide and alumina powder in polyethylene glycol with particle size of about 100 nm and 27 µm, respectively, were used. In the ex vivo experiments, reflectance spectra of skin samples with administered particles were measured and histological sections of the samples were made. In the in vivo experiment, reflectance spectroscopy, optical coherence tomography, and clinical photography were used to monitor the skin status during one month after suspension administering. It is shown that particles can be delivered into dermis up to the depth 230 µm and distributed uniformly in the tissue. Spectral measurements confirm that the particles stay in the dermis longer than 1 month.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lasers , Microesferas , Nanopartículas/administração & dosagem , Pele/metabolismo , Administração Cutânea , Óxido de Alumínio/administração & dosagem , Óxido de Alumínio/química , Histocitoquímica , Humanos , Microscopia , Nanopartículas/química , Pele/química , Titânio/administração & dosagem , Titânio/química , Tomografia de Coerência Óptica
4.
Lasers Surg Med ; 41(9): 634-42, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19816914

RESUMO

BACKGROUND AND OBJECTIVE: The treatment of skin with fractional devices creates columns of micro-ablation or micro-denaturation depending on the device. Since the geometric profiles of thermal damage depend on the treatment parameters or physical properties of the treated tissue, the size of these columns may vary from a few microns to a few millimeters. For objective evaluation of the damage profiles generated by fractional devices, this report describes an innovative and efficient method of processing and evaluating horizontal sections of skin using a novel software program. MATERIALS AND METHODS: Ex vivo porcine skin was treated with the Lux1540/10, Lux1540 Zoom and Lux2940 with 500 optics. Horizontal (radial) sections of biopsies were obtained and processed with H&E and NBTC staining. Digital images of the histologic sections were taken in either transmission or reflection illumination and were processed using the SAFHIR program. RESULTS: NBTC- and H&E-stained horizontal sections of ex vivo skin treated with ablative and non-ablative fractional devices were obtained. Geometric parameters, such as depth, diameter, and width of the coagulated layer (if applicable), and micro-columns of thermal damage, were evaluated using the SAFHIR software. The feasibility of objective comparison of the performance of two different fractional devices was demonstrated. CONCLUSION: The proposed methodology provides a comprehensive, objective, and efficient approach for the comparison of various fractional devices. Correlation of device settings with the objective dimensions of post-treatment damage profiles serve as a powerful tool for the prediction and modulation of clinical response.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Terapia a Laser/instrumentação , Pele/patologia , Pele/efeitos da radiação , Software , Animais , Fracionamento da Dose de Radiação , Estudos de Viabilidade , Terapia a Laser/efeitos adversos , Reprodutibilidade dos Testes , Suínos , Técnicas de Cultura de Tecidos
5.
Lasers Surg Med ; 40(2): 113-23, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18306165

RESUMO

BACKGROUND AND OBJECTIVES: Fractional ablation offers the potential benefits of full-surface ablative skin resurfacing while minimizing adverse effects. The purpose of this study was to evaluate the safety, damage profile, and efficacy of erbium fractional lasers. MATERIALS AND METHODS: Histology from animal and human skin as well as clinical evaluations were conducted with erbium YAG (2,940 nm) and erbium YSGG (2,790 nm) fractional lasers varying pulse width, microbeam (microb) energy, number of passes, and stacking of pulses. RESULTS: Single-pulse treatment parameters from 1 to 12 mJ per 50-70 microm diameter microbeam and 0.25-5 milliseconds pulse widths produced microcolumns of ablation with border coagulation of up to 100 microm width and 450 microm depth. Stacking of pulses generated deeper microcolumns. Clinical observations and in vivo histology demonstrate rapid re-epithelization and limited adverse side effects. Facial treatments were performed in the periorbital and perioral areas using 1-8 passes of single and stacked pulses. Treatments were well-tolerated and subjects could resume their normal routine in 4 days. A statistically significant reduction in wrinkle scores at 3 months was observed for both periorbital and perioral wrinkles using blinded grading. For periorbital treatments of four passes or more, over 90% had > or =1 score wrinkle reduction (0-9 scale) and 42% had > or =2. For perioral wrinkles, over 50% had substantial improvements (> or =2). CONCLUSION: The clinical observations and histology findings demonstrate that micro-fractional ablative treatment with 2,790 and 2,940 nm erbium lasers resulted in safe and effective wrinkle reduction with minimal patient downtime. The depth and width of the ablated microcolumns and varying extent of surrounding coagulation can be controlled and used to design new treatment procedures targeted for specific indications and areas such as moderate to severe rhytides and photodamaged skin.


Assuntos
Fracionamento da Dose de Radiação , Érbio , Terapia a Laser/instrumentação , Lasers de Estado Sólido , Envelhecimento da Pele/efeitos da radiação , Pele/efeitos da radiação , Abdome , Adulto , Animais , Técnicas Cosméticas , Desenho de Equipamento , Face , Humanos , Terapia a Laser/métodos , Pessoa de Meia-Idade , Pele/patologia , Envelhecimento da Pele/patologia , Técnicas de Cultura de Tecidos , Cicatrização/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA