Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39023701

RESUMO

Pseudomonas aeruginosa significantly induces health-associated infections in a variety of species other than humans. Over the years, the opportunistic pathogen has developed resistance against commonly used antibiotics. Since most P. aeruginosa strains are multi-drug resistant, regular antibiotic treatment of its infections is becoming a dire concern, shifting the global focus towards the development of alternate antimicrobial approaches. Pyocins are one of the most diverse antimicrobial peptide combinations produced by bacteria. They have potent antimicrobial properties, mainly against bacteria from the same phylogenetic group. P. aeruginosa, whether from clinical or environmental origins, produce several different pyocins that show inhibitory activity against other multi-drug-resistant strains of P. aeruginosa. They are, therefore, good candidates for alternate therapeutic antimicrobials because they have a unique mode of action that kills antibiotic-resistant bacteria by attacking their biofilms. Here, we review pseudomonas-derived antimicrobial pyocins with great therapeutic potential against multi-drug-resistant P. aeruginosa.

2.
Biologicals ; 86: 101770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38749079

RESUMO

Monkeypox is a type of DNA-enveloped virus that belongs to the orthopoxvirus family, closely related to the smallpox virus. It can cause an infectious disease in humans known as monkeypox disease. Although there are multiple drugs and vaccines designed to combat orthopoxvirus infections, with a primary focus on smallpox, the recent spread of the monkeypox virus to over 50 countries have ignited a mounting global concern. This unchecked viral proliferation has raised apprehensions about the potential for a pandemic corresponding to the catastrophic impact of COVID-19. This investigation explored the structural proteins of monkeypox virus as potential candidates for designing a novel hybrid multi-epitope vaccine. The epitopes obtained from the selected proteins were screened to ensure their non-allergenicity, non-toxicity, and antigenicity to trigger T and B-cell responses. The interaction of the vaccine with toll-like receptor-3 (TLR-3) and major histocompatibility complexes (MHCs) was assessed using Cluspro 2.0. To establish the reliability of the docked complexes, a comprehensive evaluation was conducted using Immune and MD Simulations and Normal Mode Analysis. However, to validate the computational results of this study, additional in-vitro and in-vivo research is essential.


Assuntos
Monkeypox virus , Humanos , Monkeypox virus/imunologia , Simulação de Acoplamento Molecular , Pandemias/prevenção & controle , Imunogenicidade da Vacina , COVID-19/prevenção & controle , COVID-19/imunologia , Mpox/prevenção & controle , Mpox/imunologia , Epitopos/imunologia , Preparação para Pandemia
3.
In Silico Pharmacol ; 11(1): 18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519944

RESUMO

The world has faced unprecedented disruptions like global quarantine and the COVID-19 pandemic due to SARS-CoV-2. To combat these unsettling situations, several effective vaccines have been developed and are currently being used. However, the emergence of new variants due to the high mutation rate of SARS-CoV-2 challenges the efficacy of existing vaccines and has highlighted the need for novel vaccines that will be effective against various SARS-CoV-2 variants. In this study, we exploited the four structural proteins of SARS-CoV-2 to execute a potential multi-epitope vaccine against SARS-CoV-2 and its variants. The vaccine was designed by utilizing the antigenic, non-toxic, and non-allergenic B-cell and T-cell epitopes, which were selected from conserved regions of viral proteins. To build a vaccine construct, epitopes were connected through different linkers and an adjuvant was also attached at the start of the construct to enhance the immunogenicity and specificity of the epitopes. The vaccine construct was then screened through the aforementioned filters and it scored 0.6019 against the threshold of 0.4 on VexiJen 2.0 which validates its antigenicity. Toll-like receptors (i.e., TLR2, TLR3, TLR4, TLR5, and TLR8) and vaccine construct were docked by Cluspro 2.0, and TLR8 showed strong interaction with construct having a maximum negative binding energy of - 1577.1 kCal/mole. C-IMMSIM's immune simulations over three doses of the vaccine and iMODS' molecular dynamic simulations were executed to assess the reliability of the docked complexes. The stability of the vaccine construct was evaluated through the physicochemical analyses and the findings suggested that the manufactured vaccine is stable under a wide range of circumstances and can trigger immune responses against various SARS-CoV-2 variants (due to conserved epitopes). However, to strengthen the formulation of the vaccine and assess its safety and effectiveness, additional investigations and studies are required to support the computational data of this research at in-vitro and in-vivo levels. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00156-2.

4.
Vaccines (Basel) ; 10(6)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35746477

RESUMO

Human Parainfluenza Virus (HPIV) Type-1, which is an anti-sense ribonucleic acid (RNA) virus belonging to the paramyxoviridae family, induces upper and lower respiratory tract infections. The infections caused by the HPIV Type-1 virus are usually confined to northwestern regions of America. HPIV-1 causes infections through the virulence of the hemagglutinin-neuraminidase (HN) protein, which plays a key role in the attachment of the viral particle with the host's receptor cells. To the best of our knowledge, there is no effective antiviral drugs or vaccines being developed to combat the infection caused by HPIV-1. In the current study, a multiple epitope-based vaccine was designed against HPIV-1 by taking the viral HN protein as a probable vaccine candidate. The multiple epitopes were selected in accordance with their allergenicity, antigenicity and toxicity scoring. The determined epitopes of the HN protein were connected simultaneously using specific conjugates along with an adjuvant to construct the subunit vaccine, with an antigenicity score of 0.6406. The constructed vaccine model was docked with various Toll-like Receptors (TLRs) and was computationally cloned in a pET28a (+) vector to analyze the expression of vaccine sequence in the biological system. Immune stimulations carried out by the C-ImmSim Server showed an excellent result of the body's defense system against the constructed vaccine model. The AllerTop tool predicted that the construct was non-allergen with and without the adjuvant sequence, and the VaxiJen 2.0 with 0.4 threshold predicted that the construct was antigenic, while the Toxinpred predicted that the construct was non-toxic. Protparam results showed that the selected protein was stable with 36.48 instability index (II) scores. The Grand average of Hydropathicity or GRAVY score indicated that the constructed protein was hydrophilic in nature. Aliphatic index values (93.53) confirmed that the construct was thermostable. This integrated computational approach shows that the constructed vaccine model has a potential to combat laryngotracheobronchitis infections caused by HPIV-I.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA