Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279278

RESUMO

Fibrosis, characterized by excessive extracellular matrix accumulation, disrupts normal tissue architecture, causes organ dysfunction, and contributes to numerous chronic diseases. This review focuses on Krüppel-like factor 10 (KLF10), a transcription factor significantly induced by transforming growth factor-ß (TGF-ß), and its role in fibrosis pathogenesis and progression across various tissues. KLF10, initially identified as TGF-ß-inducible early gene-1 (TIEG1), is involved in key biological processes including cell proliferation, differentiation, apoptosis, and immune responses. Our analysis investigated KLF10 gene and protein structures, interaction partners, and context-dependent functions in fibrotic diseases. This review highlights recent findings that underscore KLF10 interaction with pivotal signaling pathways, such as TGF-ß, and the modulation of gene expression in fibrotic tissues. We examined the dual role of KLF10 in promoting and inhibiting fibrosis depending on tissue type and fibrotic context. This review also discusses the therapeutic potential of targeting KLF10 in fibrotic diseases, based on its regulatory role in key pathogenic mechanisms. By consolidating current research, this review aims to enhance the understanding of the multifaceted role of KLF10 in fibrosis and stimulate further research into its potential as a therapeutic target in combating fibrotic diseases.


Assuntos
Fibrose , Fatores de Transcrição Kruppel-Like , Humanos , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fibrose/metabolismo , Fibrose/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais
2.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628783

RESUMO

Liver fibrosis is a progressive and debilitating condition characterized by the excessive deposition of extracellular matrix proteins. Stellate cell activation, a major contributor to fibrogenesis, is influenced by Transforming growth factor (TGF-ß)/SMAD signaling. Although Krüppel-like-factor (KLF) 10 is an early TGF-ß-inducible gene, its specific role in hepatic stellate cell activation remains unclear. Our previous study demonstrated that KLF10 knockout mice develop severe liver fibrosis when fed a high-sucrose diet. Based on these findings, we aimed to identify potential target molecules involved in liver fibrosis and investigate the mechanisms underlying the KLF10 modulation of hepatic stellate cell activation. By RNA sequencing analysis of liver tissues from KLF10 knockout mice with severe liver fibrosis induced by a high-sucrose diet, we identified ATF3 as a potential target gene regulated by KLF10. In LX-2 cells, an immortalized human hepatic stellate cell line, KLF10 expression was induced early after TGF-ß treatment, whereas ATF3 expression showed delayed induction. KLF10 knockdown in LX-2 cells enhanced TGF-ß-mediated activation, as evidenced by elevated fibrogenic protein levels. Further mechanistic studies revealed that KLF10 knockdown promoted TGF-ß signaling and upregulated ATF3 expression. Conversely, KLF10 overexpression suppressed TGF-ß-mediated activation and downregulated ATF3 expression. Furthermore, treatment with the chemical chaperone 4-PBA attenuated siKLF10-mediated upregulation of ATF3 and fibrogenic responses in TGF-ß-treated LX-2 cells. Collectively, our findings suggest that KLF10 acts as a negative regulator of the TGF-ß signaling pathway, exerting suppressive effects on hepatic stellate cell activation and fibrogenesis through modulation of ATF3 expression. These results highlight the potential therapeutic implications of targeting the KLF10-ATF3 axis in liver fibrosis treatment.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Humanos , Animais , Camundongos , Cirrose Hepática/genética , Fator de Crescimento Transformador beta , Camundongos Knockout , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fator 3 Ativador da Transcrição/genética
4.
Inflamm Res ; 72(4): 769-782, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36813915

RESUMO

BACKGROUND: The mechanism by which incompletely absorbed fructose causes gastrointestinal symptoms is not fully understood. In this study, we investigated the immunological mechanisms of bowel habit changes associated with fructose malabsorption by examining Chrebp-knockout mice exhibiting defective fructose absorption. METHODS: Mice were fed a high-fructose diet (HFrD), and stool parameters were monitored. The gene expression in the small intestine was analyzed by RNA sequencing. Intestinal immune responses were assessed. The microbiota composition was determined by 16S rRNA profiling. Antibiotics were used to assess the relevance of microbes for HFrD-induced bowel habit changes. RESULTS: Chrebp-knockout (KO) mice fed HFrD showed diarrhea. Small-intestine samples from HFrD-fed Chrebp-KO mice revealed differentially expressed genes involved in the immune pathways, including IgA production. The number of IgA-producing cells in the small intestine decreased in HFrD-fed Chrebp-KO mice. These mice showed signs of increased intestinal permeability. Chrebp-KO mice fed a control diet showed intestinal bacterial imbalance, which the HFrD exaggerated. Bacterial reduction improved diarrhea-associated stool parameters and restored the decreased IgA synthesis induced in HFrD-fed Chrebp-KO mice. CONCLUSIONS: The collective data indicate that gut microbiome imbalance and disrupting homeostatic intestinal immune responses account for the development of gastrointestinal symptoms induced by fructose malabsorption.


Assuntos
Diarreia , Frutose , Camundongos , Animais , RNA Ribossômico 16S , Diarreia/etiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Intestino Delgado , Hábitos , Imunoglobulina A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA