Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein J ; 42(5): 547-562, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37610664

RESUMO

Tryptic hydrolysates of protein fractions obtained by the Osborne method from chickpea (Cicer arietinum L.) seeds interacted with zinc ions and the results of chelation were monitored by the Energy Dispersive X-Ray (EDX) technique. The glutelin hydrolysate (GluHyd) reacted with zinc ions and depicted a relatively higher zinc content. For this reason, the zinc complex of the glutelin hydrolysate (GluHyd-Zn) was studied deeper, and 11 peptides were identified in its more zinc-containing second fraction obtained after gel filtration. The peptide HKERVQLHIIPTAVGK showed a relatively higher chelating capacity (57.86 ± 2.14%). According to the result of the ICP-OS analysis, 1 mg peptide could chelate 381.61 ± 133.39 µg zinc, and the molar ratio of peptide-zinc was about 1:4. Spectral methods proved that side chain and C-termini carboxyl groups of the peptide mostly were involved in chelation and N atoms of amino side chains, imidazole group of histidine, and N-termini at some extents were occupied by the metal ions. Modeling of zinc-peptide interaction was done using Molecular Operating Environment (MOE) software. The results of the docking correlate with the experimental data.ACE2 inhibitory effect of HKERVQLHIIPTAVGK-Zn complex (IC50 = 1.5 mg/mL) was better than that of HKERVQLHIIPTAVGK (IC50 = 2.2 mg/mL).


Assuntos
Cicer , Enzima de Conversão de Angiotensina 2 , Peptídeos , Zinco , Glutens
2.
Drug Dev Res ; 84(5): 815-838, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154099

RESUMO

Bufadienolides, naturally found in toad venoms having steroid-like structures, reveal antiproliferative effects at low doses. However, their application as anticancer drugs is strongly prevented by their Na+ /K+ -ATPase binding activities. Although several kinds of research were dedicated to moderating their Na+ /K+ -ATPase binding activity, still deeper fundamental knowledge is required to bring these findings into medical practice. In this work, we reviewed data related to anticancer activity of bufadienolides such as bufalin, arenobufagin, bufotalin, gamabufotalin, cinobufotalin, and cinobufagin and their derivatives. Bufotoxins, derivatives of bufadienolides containing polar molecules mainly belonging to argininyl residues, are reviewed as well. The established structures of bufotoxins have been compiled into a one-page figure to review their structures. We also highlighted advances in the structure-modification of the structure of compounds in this class. Drug delivery approaches to target these compounds to tumor cells were discussed in one section. The issues related to extraction, identification, and quantification are separated into another section.


Assuntos
Venenos de Anfíbios , Antineoplásicos , Bufanolídeos , Bufanolídeos/farmacologia , Bufanolídeos/química , Bufanolídeos/metabolismo , Antineoplásicos/farmacologia , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/química , Adenosina Trifosfatases
3.
Nat Chem Biol ; 16(7): 766-775, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483376

RESUMO

Cell surfaces are glycosylated in various ways with high heterogeneity, which usually leads to ambiguous conclusions about glycan-involved biological functions. Here, we describe a two-step chemoenzymatic approach for N-glycan-subtype-selective editing on the surface of living cells that consists of a first 'delete' step to remove heterogeneous N-glycoforms of a certain subclass and a second 'insert' step to assemble a well-defined N-glycan back onto the pretreated glyco-sites. Such glyco-edited cells, carrying more homogeneous oligosaccharide structures, could enable precise understanding of carbohydrate-mediated functions. In particular, N-glycan-subtype-selective remodeling and imaging with different monosaccharide motifs at the non-reducing end were successfully achieved. Using a combination of the expression system of the Lec4 CHO cell line and this two-step glycan-editing approach, opioid receptor delta 1 (OPRD1) was investigated to correlate its glycostructures with the biological functions of receptor dimerization, agonist-induced signaling and internalization.


Assuntos
Membrana Celular/química , Células Epiteliais/química , Glicoconjugados/química , Oligossacarídeos/química , Receptores Opioides delta/química , Animais , Células CHO , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colforsina/farmacologia , Cricetulus , Encefalina Leucina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica , Glicoconjugados/metabolismo , Glicosilação , Células HEK293 , Humanos , Camundongos , Oligossacarídeos/metabolismo , Multimerização Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA