RESUMO
Current-driven dynamics of topological spin textures, such as skyrmions and antiskyrmions, have garnered considerable attention in condensed matter physics and spintronics. As compared with skyrmions, the current-driven dynamics of their antiparticles - antiskyrmions - remain less explored due to the increased complexity of antiskyrmions. Here, we design and employ fabricated microdevices of a prototypical antiskyrmion host, (Fe0.63Ni0.3Pd0.07)3P, to allow in situ current application with Lorentz transmission electron microscopy observations. The experimental results and related micromagnetic simulations demonstrate current-driven antiskyrmion dynamics confined within stripe domains. Under nanosecond-long current pulses, antiskyrmions exhibit directional motion along the stripe regardless of the current direction, while the antiskyrmion velocity is linearly proportional to the current density. Significantly, the antiskyrmion mobility could be enhanced when the current flow is perpendicular to the stripe direction. Our findings provide novel and reliable insights on dynamical antiskyrmions and their potential implications on spintronics.
RESUMO
Topological magnetic (anti)skyrmions are robust string-like objects heralded as potential components in next-generation topological spintronics devices due to their low-energy manipulability via stimuli such as magnetic fields, heat, and electric/thermal current. While these 2D topological objects are widely studied, intrinsically 3D electron-spin real-space topology remains less explored despite its prevalence in bulky magnets. 2D-imaging studies reveal peculiar vortex-like contrast in the core regions of spin textures present in antiskyrmion-hosting thin plate magnets with S4 crystal symmetry, suggesting a more complex 3D real-space structure than the 2D model suggests. Here, holographic vector field electron tomography captures the 3D structure of antiskyrmions in a single-crystal, precision-doped (Fe0.63Ni0.3Pd0.07)3P (FNPP) lamellae at room temperature and zero field. These measurements reveal hybrid string-like solitons composed of skyrmions with topological number W = -1 on the lamellae's surfaces and an antiskyrmion (W = + 1) connecting them. High-resolution images uncover a Bloch point quadrupole (four magnetic (anti)monopoles that are undetectable in 2D imaging) which enables the observed lengthwise topological transitions. Numerical calculations corroborate the stability of hybrid strings over their conventional (anti)skyrmion counterparts. Hybrid strings result in topological tuning, a tunable topological Hall effect, and the suppression of skyrmion Hall motion, disrupting existing paradigms within spintronics.
RESUMO
The use of magnetic states in memory devices has a history dating back decades, and the experimental discovery of magnetic skyrmions and subsequent demonstrations of their control via magnetic fields, heat, and electric/thermal currents have ushered in a new era for spintronics research and development. Recent studies have experimentally discovered the antiskyrmion, the skyrmion's antiparticle, and while several host materials have been identified, control via thermal current remains elusive. In this work, we use thermal current to drive the transformation between skyrmions, antiskyrmions and non-topological bubbles, as well as the switching of helical states in the antiskyrmion-hosting ferromagnet (Fe0.63Ni0.3Pd0.07)3P at room temperature. We discover that a temperature gradient [Formula: see text] drives a transformation from antiskyrmions to non-topological bubbles to skyrmions while under a magnetic field and observe the opposite, unidirectional transformation from skyrmions to antiskyrmions at zero-field, suggesting that the antiskyrmion, more so than the skyrmion, is robustly metastable at zero field.
RESUMO
Nanometric topological spin textures, such as skyrmions (Sks) and antiskyrmions (antiSks), have attracted much attention recently. However, most studies have focused on two-dimensional spin textures in films with inherent or synthetic antisymmetric spin-exchange interaction, termed Dzyaloshinskii-Moriya interaction, although three-dimensional (3D) topological spin textures, such as antiSks composed of alternating Bloch- and Néel-type spin spirals, chiral bobbers carrying emergent magnetic monopoles, and deformed Sk strings, are ubiquitous. To elucidate these textures, we have developed a 3D nanometric magnetic imaging technique, tomographic Lorentz transmission electron microscopy (TEM). The approach enables the visualization of the 3D shape of magnetic objects and their 3D vector field mapping. Here we report 3D vector field maps of deformed Sk-strings and antiSk using the technique. This research approach will lead to discoveries and understanding of fertile 3D magnetic structures in a broad class of magnets, providing insight into 3D topological magnetism.
Assuntos
Imageamento Tridimensional , Imãs , Microscopia Eletrônica de TransmissãoRESUMO
The manipulation and control of electron spins, the fundamental building blocks of magnetic domains and spin textures, are at the core of spintronics. Of particular interest is the effect of the electric current on topological magnetic skyrmions, such as the current-induced deformation of isolated skyrmions. The deformation has consequences ranging from perturbed dynamics to modified packing configurations. In this study, we measured the current-driven real-space deformation of isolated, pinned skyrmions within Co10Zn10 at room temperature. We observed that the skyrmions are surprisingly soft, readily deforming during electric current application into an elliptical shape with a well-defined deformation axis (semimajor axis). We found that this axis rotates unidirectionally toward the current direction irrespective of electric current polarity and that the elliptical deformation reverses back upon current termination. We quantified the average distortion δ, which increased by â¼90% during the largest applied current density |j| = 8.46 ×109 A/m2 when compared with the skyrmion's intrinsic shape ([Formula: see text]). Additionally, we demonstrated an approximately 120% average skyrmion core size expansion during current application, highlighting the skyrmions' inherent topological protection. This evaluation of in situ electric current-induced skyrmion deformation paints a clearer picture of spin-polarized electron-skyrmion interactions and may prove essential in designing spintronic devices.
RESUMO
The electrical Hall effect can be significantly enhanced through the interplay of the conduction electrons with magnetism, which is known as the anomalous Hall effect (AHE). Whereas the mechanism related to band topology has been intensively studied towards energy efficient electronics, those related to electron scattering have received limited attention. Here we report the observation of giant AHE of electron-scattering origin in a chiral magnet MnGe thin film. The Hall conductivity and Hall angle, respectively, reach [Formula: see text] Ω-1 cm-1 and [Formula: see text]% in the ferromagnetic region, exceeding the conventional limits of AHE of intrinsic and extrinsic origins, respectively. A possible origin of the large AHE is attributed to a new type of skew-scattering via thermally excited spin-clusters with scalar spin chirality, which is corroborated by the temperature-magnetic-field profile of the AHE being sensitive to the film-thickness or magneto-crystalline anisotropy. Our results may open up a new platform to explore giant AHE responses in various systems, including frustrated magnets and thin-film heterostructures.