Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 14791-14804, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585134

RESUMO

In this study, NiZnFe2O4 composite was synthesized using a sol-gel route and subjected to nonthermal plasma treatment for tailoring their cations' distribution and physicochemical, magnetic, and photocatalytic properties. Microwave plasma treatment was given to the composites for 60 min in support of postsynthesis sintering at 700 °C for 5 h. X-ray diffraction (XRD) analysis was conducted on pre- and postplasma-modified ferrite composites to identify phase-pure cubic spinel structure and cations' distribution. The cation distributions were measured from the ratio of XRD intensity peaks corresponding to (220), (311), (422) and (440) planes. The intensity ratio of plasma-treated ferrite composites decreased compared to that of pristine composites. The crystallite size and lattice constant were increased on plasma treatment of the composite. The morphological analysis showed nanoflower-like structures of the particles with an increased surface area in the plasma-treated composites. The plasma oxidation and sputtering effects caused a reduction in the nanoflower size. The energy bandgap increased with a decrease in particle size due to plasma treatment. The rhodamine B dye solution was then irradiated with a light source in the presence of the nanocomposites. The dye degradation efficiency of the composite photocatalyst increased from 80 to 96% after plasma treatment.

2.
ACS Omega ; 9(1): 1977-1989, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222649

RESUMO

Nonthermal plasma processing is a chemical-free and environmentally friendly technique to enhance the self-cleaning activity of nanoparticle-coated cotton fabrics. In this research, Sr-doped ZnO/carbon nanotube (CNT) photocatalysts, namely, S10ZC2, S15ZC2, and S20ZC2 with different Sr doping concentrations, were synthesized using the sol-gel method and coated on plasma-functionalized fabric to perform the self-cleaning tests. The fabrics were treated with dielectric barrier discharge plasma in an open environment for 3 min to achieve a stable coating of nanoparticles. The energy band gap of the photocatalyst decreased with an increase in the level of Sr doping. The band gap of S10ZC2, S15ZC2, and S20ZC2 photocatalysts was estimated to be 2.85, 2.78, and 2.5 eV, respectively. The hexagonal wurtzite structure of ZnO was observed on the fabric surface composited with CNTs and Sr. The S20ZC2 photocatalyst showed better homogeneity and photocatalytic response on the fabric when compared with S10ZC2- and S15ZC2-coated fabrics. The S20ZC2 photocatalyst showed 89% dye degradation efficiency after 4 h of light exposure in methylene blue solution, followed by S15ZC2 (84%) and S10ZC2 (80%) photocatalysts.

3.
ACS Omega ; 9(3): 3507-3524, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284017

RESUMO

This study used a simple coprecipitation method to produce pristine, silica-coated, and amino-functionalized CoFe2O4 nanoadsorbents. Amino-functionalization was done to increase the active surface area and metal ion removal efficiency. Both pristine and functionalized adsorbents were employed to recover Pb(II), Zn(II), and Cu(II) ions from wastewater. The adsorption tests were performed by varying the initial concentration of metal ions and contact time at a fixed pH of 6.5. Atomic adsorption spectroscopy was utilized to detect the proportion of metals removed from water. Additionally, the pseudo-first-order, pseudo-second-order, Freundlich, and Langmuir models were employed to compute the kinetic and isothermic data from metal ion adsorption onto the adsorbents. The amino-functionalized adsorbent showed adsorption capacities of 277.008, 254.453, and 258.398 mg/g for Cu(II), Pb(II), and Zn(II) ions, respectively. According to the adsorption results, the Langmuir isotherm and the pseudo-second-order model best suit the data. The best fitting of the pseudo-second-order model with the data indicates that coordinative interactions between amino groups and metal ions are responsible for chemisorption. The metal ions bind with -NH2 groups on the adsorbent surface through chelate bonds. Chelate bonds are extremely strong and stable, indicating the effectiveness of the CoFe2O4@SiO2-NH2 adsorbent in adsorbing heavy-metal ions. The tested adsorbent exhibited good performance, batter stability, and good reusable values around 77, 81, and 76% for Cu(II), Pb(II), and Zn(II) ions, respectively, after five adsorption cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA