Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 81(2): 319-329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018457

RESUMO

BACKGROUND: The chronic hypoxia of high-altitude residence poses challenges for tissue oxygen supply and metabolism. Exposure to high altitude during pregnancy increases the incidence of hypertensive disorders of pregnancy and fetal growth restriction and alters placental metabolism. High-altitude ancestry protects against altitude-associated fetal growth restriction, indicating hypoxia tolerance that is genetic in nature. Yet, not all babies are protected and placental pathologies associated with fetal growth restriction occur in some Andean highlanders. METHODS: We examined placental metabolic function in 79 Andeans (18-45 years; 39 preeclamptic and 40 normotensive) living in La Paz, Bolivia (3600-4100 m) delivered by unlabored Cesarean section. Using a selection-nominated approach, we examined links between putatively adaptive genetic variation and phenotypes related to oxygen delivery or placental metabolism. RESULTS: Mitochondrial oxidative capacity was associated with fetal oxygen delivery in normotensive but not preeclamptic placenta and was also suppressed in term preeclamptic pregnancy. Maternal haplotypes in or within 200 kb of selection-nominated genes were associated with lower placental mitochondrial respiratory capacity (PTPRD [protein tyrosine phosphatase receptor-δ]), lower maternal plasma erythropoietin (CPT2 [carnitine palmitoyl transferase 2], proopiomelanocortin, and DNMT3 [DNA methyltransferase 3]), and lower VEGF (vascular endothelial growth factor) in umbilical venous plasma (TBX5 [T-box transcription factor 5]). A fetal haplotype within 200 kb of CPT2 was associated with increased placental mitochondrial complex II capacity, placental nitrotyrosine, and GLUT4 (glucose transporter type 4) protein expression. CONCLUSIONS: Our findings reveal novel associations between putatively adaptive gene regions and phenotypes linked to oxygen delivery and placental metabolic function in highland Andeans, suggesting that such effects may be of genetic origin. Our findings also demonstrate maladaptive metabolic mechanisms in the context of preeclampsia, including dysregulation of placental oxygen consumption.


Assuntos
Placenta , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Placenta/metabolismo , Cesárea , Retardo do Crescimento Fetal , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Fenótipo , Genômica
2.
Hypertension ; 79(6): 1286-1296, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35437031

RESUMO

BACKGROUND: Preeclampsia and fetal growth restriction increase cardiopulmonary disease risk for affected offspring and occur more frequently at high-altitude (≥2500 m). Retrospective studies indicate that birth to a preeclampsia woman at high altitude increases the risk of pulmonary hypertension (PH) in later life. This prospective study asked whether preeclampsia with or without fetal growth restriction exaggerated fetal hypoxia and impaired angiogenesis in the fetal lung, leading to neonatal cardiopulmonary circulation abnormalities and neonatal or infantile PH. METHODS AND RESULTS: We studied 79 maternal-infant pairs (39 preeclampsia, 40 controls) in Bolivia (3600-4100 m). Cord blood erythropoietin, hemoglobin, and umbilical artery and venous blood gases were measured as indices of fetal hypoxia. Maternal and cord plasma levels of angiogenic (VEGF [vascular endothelial growth factor]) and antiangiogenic (sFlt1 [soluble fms-like tyrosine kinase]) factors were determined. Postnatal echocardiography (1 week and 6-9 months) assessed pulmonary hemodynamics and PH. Preeclampsia augmented fetal hypoxia and increased the risk of PH in the neonate but not later in infancy. Pulmonary abnormalities were confined to preeclampsia cases with fetal growth restriction. Maternal and fetal plasma sFlt1 levels were higher in preeclampsia than controls and positively associated with PH. CONCLUSIONS: The effect of preeclampsia with fetal growth restriction to increase fetal hypoxia and sFlt1 levels may impede normal development of the pulmonary circulation at high altitude, leading to adverse neonatal pulmonary vascular outcomes. Our observations highlight important temporal windows for the prevention of pulmonary vascular disease among babies born to highland residents or those with exaggerated hypoxia in utero or newborn life.


Assuntos
Hipertensão Pulmonar , Pré-Eclâmpsia , Altitude , Feminino , Retardo do Crescimento Fetal , Hipóxia Fetal , Humanos , Hipertensão Pulmonar/etiologia , Recém-Nascido , Fator de Crescimento Placentário , Gravidez , Estudos Prospectivos , Estudos Retrospectivos , Fator A de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
3.
J Chem Phys ; 154(10): 104122, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722015

RESUMO

A new method called QM-VM2 is presented that efficiently combines statistical mechanics with quantum mechanical (QM) energy potentials in order to calculate noncovalent binding free energies of host-guest systems. QM-VM2 efficiently couples the use of semi-empirical QM (SEQM) energies and geometry optimizations with an underlying molecular mechanics (MM) based conformational search, to find low SEQM energy minima, and allows for processing of these minima at higher levels of ab initio QM theory. A progressive geometry optimization scheme is introduced as a means to increase conformational sampling efficiency. The newly implemented QM-VM2 is used to compute the binding free energies of the host molecule cucurbit[7]uril and a set of 15 guest molecules. The results are presented along with comparisons to experimentally determined binding affinities. For the full set of 15 host-guest complexes, which have a range of formal charges from +1 to +3, SEQM-VM2 based binding free energies show poor correlation with experiment, whereas for the ten +1 complexes only, a significant correlation (R2 = 0.8) is achieved. SEQM-VM2 generation of conformers followed by single-point ab initio QM calculations at the dispersion corrected restricted Hartree-Fock-D3(BJ) and TPSS-D3(BJ) levels of theory, as post-processing corrections, yields a reasonable correlation with experiment for the full set of host-guest complexes (R2 = 0.6 and R2 = 0.7, respectively) and an excellent correlation for the +1 formal charge set (R2 = 1.0 and R2 = 0.9, respectively), as long as a sufficiently large basis set (triple-zeta quality) is employed. The importance of the inclusion of configurational entropy, even at the MM level, for the achievement of good correlation with experiment was demonstrated by comparing the calculated ΔE values with experiment and finding a considerably poorer correlation with experiment than for the calculated free energy ΔE - TΔS. For the complete set of host-guest systems with the range of formal charges, it was observed that the deviation of the predicted binding free energy from experiment correlates somewhat with the net charge of the systems. This observation leads to a simple empirical interpolation scheme to improve the linear regression of the full set.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA