Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13871, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974089

RESUMO

We demonstrate magneto-optical (MO) polarization transformation due to surface plasmons in CoPt perpendicular magnetic films in the polar Kerr geometry. An extraordinary Kerr rotation angle (θK = ± 88.9°) that almost reaches the upper limit of polarization is produced in the attenuated total reflection (Kretschmann) configuration. P-polarized incident radiation is almost transformed upon reflection to s-polarized radiation, which may be out of phase depending on whether the magnetization of CoPt is up or down. Moreover, the reflected intensity may be drastically modulated by applying an external magnetic field. The reflectivity goes almost to zero in the demagnetized state and increases with increasing external magnetic field. This drastic optical response is attributed to the MO destructive interference produced by the subwavelength magnetic domain structure.

2.
Sci Rep ; 11(1): 614, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436719

RESUMO

We have fabricated a high quality magnetic Ni0.5Zn0.5Fe2O4 ferrite powder/polymer composite sheet consisting of common and environmentally friendly elements only. The sheet was then tested for its dynamic permeability by irradiating with electromagnetic waves with frequencies up to 50 GHz. Two different originally developed methods were used for the high-frequency permeability measurements, a short-circuited microstrip line method and a microstrip line-probe method. It is challenging to measure the dynamic permeability of magnetic thin films/sheets beyond 10 GHz because of the low response signal from these materials. However, the two methods produced essentially equivalent results. In the frequency dependent permeability profile, the maximum position of the profile, [Formula: see text], shifted towards higher frequencies upon increasing an applied (strong) static external magnetic field, [Formula: see text]. A linear relationship between [Formula: see text] and [Formula: see text] for the entire range of [Formula: see text] was observed even at small [Formula: see text]. In general, the spinel-structured Ni-based ferrites exhibit low magnetic anisotropy, but the present sample showed a uniaxial-anisotropic behavior in the parallel direction of the sheet. Our Ni0.5Zn0.5Fe2O4 powder/polymer composite sheet thus exhibits high performance at GHz frequencies, and should be applicable e.g. as an anisotropic electromagnetic wave-interference material.

3.
Nanoscale Horiz ; 4(2): 434-444, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32254095

RESUMO

For the first time, this work presents a novel room temperature time-effective concept to manipulate the crystallization kinetics and magnetic responses of thin films grown on amorphous substrates. Conventionally, metal-induced crystallization is adopted to minimize the crystallization temperature of the upper-layer thin film. However, due to the limited surface area of the continuous metal under-layer, the degree of crystallization is insufficient and post-annealing is required. To expose a large surface area of the metal under-layer, we propose a simple and novel approach of using an Au nanodots array instead of a continuous metallic under-layer to obtain crystallization of upper-layer thin films. Spinel cobalt ferrite (CFO) thin film as a 'model' was deposited on an Au nano-dots array to realize this methodology. Our findings revealed that the addition of quantum-sized Au nano-dots as a metal under-layer dramatically enhanced the crystallization of the cobalt ferrite upper layer at room temperature. The appearance of major X-ray diffraction peaks with high intensity and well-defined crystallized lattice planes observed via transmission electron microscopy confirmed the crystallization of the CFO thin film deposited at room temperature on 4 nm-sized Au nano-dots. This crystallized CFO thin film exhibits 18-fold higher coercivity (Hc = 4150 Oe) and 4-fold higher saturation magnetization (Ms = 262 emu cm-3) compared to CFO deposited without the Au under-layer. The development of this novel concept of room-temperature crystallization without the aid of additives and solvents represents a crucial breakthrough that is highly significant for exploring the green and energy-efficient synthesis of a variety of oxide and metal thin films.

4.
Nanotechnology ; 27(38): 385605, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27528598

RESUMO

Ordered, two-dimensional, self-organized Au nanoparticles were fabricated using radiofrequency (RF) magnetron sputtering. The particles were uniformly spherical in shape and ultrafine in size (3-7 nm) and showed an ultrahigh density in the order of ∼10(12) inch(-2). A custom-developed sputtering apparatus that employs low sputtering power density and a minimized sputtering time (1 min) was used to markedly simplify the preparation conditions for Au nanoparticle fabrication. The spatial distribution of Au nanoparticles was rigorously controlled by placing a Ta interfacial layer between the Au nanoparticles and substrate as well as by post-annealing samples in an Ar atmosphere after the formation of Au nanoparticles. The interfacial layer and the post-annealing step caused approximately 40% of the Au nanoparticles on the substrate surface to orient in the (111) direction. This method was shown to produce ultrafine Au nanoparticles showing an ultrahigh surface density. The crystal orientation of the nanoparticles can be precisely controlled with respect to the substrate surface. Therefore, this technique promises to deliver tunable nanostructures for applications in the field of high-performance electronic devices.

5.
Sci Rep ; 6: 30074, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435010

RESUMO

Perpendicular magnetization and precise control over the magnetic easy axis in magnetic thin film is necessary for a variety of applications, particularly in magnetic recording media. A strong (111) orientation is successfully achieved in the CoFe2O4 (CFO) thin film at relatively low substrate temperature of 100 °C, whereas the (311)-preferred randomly oriented CFO is prepared at room temperature by the DC magnetron sputtering technique. The oxygen-deficient porous CFO film after post-annealing gives rise to compressive strain perpendicular to the film surface, which induces large perpendicular coercivity. We observe the coercivity of 11.3 kOe in the 40-nm CFO thin film, which is the highest perpendicular coercivity ever achieved on an amorphous SiO2/Si substrate. The present approach can guide the systematic tuning of the magnetic easy axis and coercivity in the desired direction with respect to crystal orientation in the nanoscale regime. Importantly, this can be achieved on virtually any type of substrate.

6.
Phys Chem Chem Phys ; 16(6): 2347-57, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24352649

RESUMO

The present work is focused on the effect of Fe(3+) replacement by rare earth-Ho(3+) ions and their influence on the properties of MnFe2O4 ferrite. The Ho(3+) substituted MnFe2O4 ferrite samples with chemical formula MnHoxFe2-xO4 were synthesized where substitution concentration of Ho(3+) was 0.0, 0.05, 0.1 and 0.15. The samples were synthesized by the self-ignited sol-gel method using the nitrates of the respective elements. Powder X-ray diffraction, transmission electron microscopy, infrared spectroscopy, vibrating sample magnetometer (VSM) and electrical measurements were employed to characterize the structural, magnetic and electrical properties of these ferrite nanoparticles. The cations distribution between the tetrahedral (A-site) and octahedral sites (B-site) has been estimated by XRD analysis. It is found that substitution of Ho(3+) ions favorably influenced the magnetic and electrical properties. Magnetic measurements were carried out at 77 and 300 K. Saturation magnetization and coercivity increased from 54.57 to 71.6 emu g(-1) and 172 to 766 Oe, respectively, with increasing the Ho(3+) substitution. The change in magnetic properties may be explained with the increase of A-O-B (FeA(3+)-O(2-)-HoB(3+)) super exchange interactions and the anisotropy constant. The electrical properties show that the pure sample has lower resistivity with respect to any Ho(3+) doped one. The conduction mechanism is used to interpret electrical measurements. Results of the presently investigated samples with enhanced saturation magnetization, coercivity and remanence ratio indicate that the Ho(3+) doped MnFe2O4 nanoparticles can be a useful candidate for the application in high density recording media.

7.
J Biochem ; 154(3): 281-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23760554

RESUMO

Lipid droplets (LDs) are independent organelles in adipocytes that are composed of a lipid ester core surrounded by a phospholipid monolayer. The fatty acid composition of the phospholipid monolayer should determine the metabolism and dynamics of LDs. In this study, we examined the fatty acid composition of phospholipid monolayer in LDs during the differentiation of 3T3-L1 adipocytes. The levels of saturated fatty acids (SFAs), such as 16:0 and 18:0, in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of LDs decreased during differentiation. In contrast, the levels of monounsaturated fatty acids (MUFAs) such as 16:1n-7 and 18:1n-9 in PC and PE of LDs and the level of polyunsaturated fatty acids (PUFAs) such as 20:3n-6, 20:4n-6 and 22:6n-3 in PE of LDs increased during differentiation. These results suggest that the phospholipid monolayer in mature LDs is more fluid than that in nascent LDs. The fatty acid compositions of the LD monolayer were different from those of the microsome bilayer in the early stage of differentiation, but similar to those of the microsome bilayer in the late stage of differentiation. These data provide evidence that biophysical properties of the phospholipid monolayer in LDs change during adipocyte differentiation.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular/fisiologia , Metabolismo dos Lipídeos , Organelas/química , Células 3T3-L1 , Adipócitos/química , Adipócitos/citologia , Animais , Cromatografia em Camada Fina , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Camundongos , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA