Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(10)2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39452124

RESUMO

This study investigates the therapeutic potential of Clinacanthus nutans extracts, focusing on the 95% ethanol (95E) extract and its nanoemulsified form, against oral pathogens and their bioactive effects. The findings demonstrate potent antibacterial activity against Streptococcus mutans and Staphylococcus aureus, essential for combating periodontal diseases, and significant anti-biofilm properties crucial for plaque management. Additionally, the extracts exhibit promising inhibitory effects on α-glucosidase enzymes, indicating potential for diabetes management through glucose metabolism regulation. Their anti-inflammatory properties, evidenced by reduced nitric oxide production, underscore their potential for treating oral infections and inflammation. Notably, the nanoemulsified 95E extract shows higher efficiency than the conventional extract, suggesting a multifunctional treatment approach for periodontal issues and metabolic disorders. These results highlight the enhanced efficacy of the nanoemulsified extract, proposing it as an effective treatment modality for periodontal disease in diabetic patients. This research offers valuable insights into the development of innovative drug delivery systems using natural remedies for improved periodontal care in diabetic populations.

2.
Animals (Basel) ; 14(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39061546

RESUMO

Nanostructured lipid carriers (NLC) represent the second generation of nanoparticles, offering numerous advantages over conventional delivery systems. These include improved stability, enhanced drug-loading capacity, and controlled release profiles, making them highly attractive candidates for a wide range of therapeutic applications. Their suitability for hydrophobic drugs like a traditional medicinal plant of Thailand as clove oil and alpha-mangostin. We investigated into nanostructured lipid carriers loaded with Alpha-Mangostin and clove oil (NLC-AMCO) into the physicochemical and biological characteristics to identify the formulation with the highest efficacy for treatment. The particle size, charge, polydispersity index, and other characterizations were recorded. The realtime ex vivo penetration was explored using canine gingival tissue. Drug sustained release was assessed by HPLC. Moreover, the antibacterial properties were tested by conventional methods. The NLC-AMCO can be stored at up to 40 °C for 60 days without any alterations in particle characteristics. Gingival tissue penetration and sustained drug release were superior compared to unencapsulated counterparts. It exhibited greater effectiveness in inhibiting bacterial growth than the antibiotics tested, particularly against bacteria from the oral cavities of dogs. Therefore, this alternative treatment approach offers cost-effectiveness and ease of administration for pet owners and reduces discomfort for the animals during restraint.

3.
PLoS One ; 19(5): e0303555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753729

RESUMO

Cluster regularly interspaced short palindromic repeats and CRISPR associated protein 9 (CRISPR-Cas9) is a promising tool for antimicrobial re-sensitization by inactivating antimicrobial resistance (AMR) genes of bacteria. Here, we programmed CRISPR-Cas9 with common spacers to target predominant blaCTX-M variants in group 1 and group 9 and their promoter in an Escherichia coli model. The CRISPR-Cas9 was delivered by non-replicative phagemid particles from a two-step process, including insertion of spacer in CRISPR and construction of phagemid vector. Spacers targeting blaCTX-M promoters and internal sequences of blaCTX-M group 1 (blaCTX-M-15 and -55) and group 9 (blaCTX-M-14, -27, -65, and -90) were cloned into pCRISPR and phagemid pRC319 for spacer evaluation and phagemid particle production. Re-sensitization and plasmid clearance were mediated by the spacers targeting internal sequences of each group, resulting in 3 log10 to 4 log10 reduction of the ratio of resistant cells, but not by those targeting the promoters. The CRISPR-Cas9 delivered by modified ΦRC319 particles were capable of re-sensitizing E. coli K-12 carrying either blaCTX-M group 1 or group 9 in a dose-dependent manner from 0.1 to 100 multiplicity of infection (MOI). In conclusion, CRISPR-Cas9 system programmed with well-designed spacers targeting multiple variants of AMR gene along with a phage-based delivery system could eliminate the widespread blaCTX-M genes for efficacy restoration of available third-generation cephalosporins by reversal of resistance in bacteria.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Escherichia coli , Escherichia coli/genética , Escherichia coli/virologia , Bacteriófagos/genética , beta-Lactamases/genética , Proteínas de Escherichia coli/genética , Plasmídeos/genética , Regiões Promotoras Genéticas , Edição de Genes/métodos , Antibacterianos/farmacologia
4.
Fish Shellfish Immunol ; 146: 109383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246266

RESUMO

A mucoadhesive chitosan polymer-based nanoplatform has been increasingly recognized as an effective mucosal vaccine delivery system for fish. The present study aimed to investigate the effectiveness of immersion vaccination with a chitosan polymer-based nanovaccine to elicit an immune response in serum and mucus of red tilapia and evaluate its protective efficacy after immersion challenge with a heterogenous strain of Aeromonas veronii UDRT09. Six hundred red tilapia (22 ± 1.8 g) were randomly allocated into four experimental groups: control, empty-polymeric nanoparticle (PC), formalin-killed vaccine (FKV), and chitosan polymer-based nanovaccine (CS-NV) in triplicate. The specific IgM antibody levels and their bactericidal activity were assessed in serum and mucus for 28 days after immersion vaccination and followed by immersion challenge with A. veronii. The immersion vaccine was found to be safe for red tilapia, with no mortalities occurring during the vaccination procedure. The specific IgM antibody levels and bactericidal activity against A. veronii in both serum and mucus were significantly higher in red tilapia vaccinated with CS-NV compared to the FKV and control groups at all time points. Furthermore, the serum lysozyme activity, ACH50, and total Ig levels demonstrated a significant elevation in the groups vaccinated with CS-NV compared to the FKV and control groups. Importantly, the Relative Percentage Survival (RPS) value of the CS-NV group (71 %) was significantly higher than that of the FKV (15.12 %) and PC (2.33 %) groups, respectively. This indicates that the chitosan polymer-based nanovaccine platform is an effective delivery system for the immersion vaccination of tilapia.


Assuntos
Quitosana , Ciclídeos , Doenças dos Peixes , Tilápia , Animais , Nanovacinas , Aeromonas veronii , Imunidade nas Mucosas , Polímeros , Imersão , Vacinação/veterinária , Vacinação/métodos , Vacinas de Produtos Inativados , Imunoglobulina M
5.
Theriogenology ; 217: 127-135, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271766

RESUMO

Cytokeratin 19 (CK19) is a complex intracytoplasmic cytoskeletal protein primarily localized in the ducts of the mammary gland and skin epithelial cells. In humans, the expression of CK19 gene within circulating tumor cells (CTCs) extracted from blood samples of breast cancer patients reflects tumor cell activity, offering valuable insights for predicting early metastatic relapse or monitoring treatment effectiveness. However, knowledge of serum tumor markers is limited in veterinary oncology. Recently, droplet digital PCR (ddPCR), has been employed to explore rare target genes due to its heightened sensitivity and accuracy as a novel molecular diagnostic tool. The objectives of this study were to investigate the expression of the CK19 mRNA in CTCs, non-neoplastic mammary tissues, and both benign and malignant canine mammary tumors (CMTs) through ddPCR analysis. In Study I, we optimized the discard volume for blood samples to reduce CK19 contamination from skin epithelial cells post-venipuncture. The results revealed that discarding the initial 3 mL of blood was adequate and effective in eliminating CK19 mRNA contamination. In Study II, after the removal of the initial 3 mL of blood, we investigated CK19 mRNA-positive CTCs in the peripheral blood of normal healthy dogs, including those with benign and malignant CMTs. Intriguingly, CK19 mRNA was undetectable in all blood samples. The expression of CK19 mRNA in mammary tissues was investigated in Study III. The copy number (CN) ratios of the CK19 gene in non-neoplastic mammary tissues (14.77 ± 14.65) were significantly higher (P < 0.05) than those in benign (4.23 ± 3.35) and malignant groups (6.56 ± 5.64). Notably, no difference was observed between the benign and malignant groups. In conclusion, CK19 mRNA appeared unlikely to be a suitable candidate as a biomarker in the peripheral blood of CMTs, while the CN ratio in mammary tissues could serve as a potential discriminator between non-neoplastic and CMT groups, complementing the gold standard of histopathological examination.


Assuntos
Neoplasias da Mama , Doenças do Cão , Neoplasias Mamárias Animais , Humanos , Cães , Animais , Feminino , Queratina-19/genética , Queratina-19/metabolismo , Neoplasias Mamárias Animais/diagnóstico , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/veterinária , Reação em Cadeia da Polimerase/veterinária , Biomarcadores Tumorais/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Doenças do Cão/metabolismo
6.
Vaccines (Basel) ; 11(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631924

RESUMO

Tilapia is the world's most extensively farmed species after carp. It is an attractive species for aquaculture as it grows quickly, reaching harvest size within six to seven months of production, and provides an important source of food and revenue for many low-income families, especially in low- to middle-income countries. The expansion of tilapia aquaculture has resulted in an intensification of farming systems, and this has been associated with increased disease outbreaks caused by various pathogens, mostly bacterial and viral agents. Vaccination is routinely used to control disease in higher-value finfish species, such as Atlantic salmon. At the same time, many tilapia farmers are often unwilling to vaccinate their fish by injection once the fish have been moved to their grow-out site. Alternative vaccination strategies are needed to help tilapia farmers accept and use vaccines. There is increasing interest in nanoparticle-based vaccines as alternative methods for delivering vaccines to fish, especially for oral and immersion administration. They can potentially improve vaccine efficacy through the controlled release of antigens, protecting antigens from premature proteolytic degradation in the gastric tract, and facilitating antigen uptake and processing by antigen-presenting cells. They can also allow targeted delivery of the vaccine at mucosal sites. This review provides a brief overview of the bacterial and viral diseases affecting tilapia aquaculture and vaccine strategies for farmed tilapia. It focuses on the use of nanovaccines to improve the acceptance and uptake of vaccines by tilapia farmers.

7.
Fish Shellfish Immunol ; 139: 108913, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37393062

RESUMO

Streptococcus agalactiae is one of Thailand's most important pathogens in tilapia aquaculture. Vaccination is a very effective method for protecting fish against disease in aquaculture. Oral vaccination is an interesting route for vaccine delivery as it mimics the pathogenesis of S. agalactiae and provides convenient administration for mass vaccination of fish. Moreover, gut mucosal immunity is associated with a mucus layer on the gastrointestinal tract. Therefore, this study aimed to develop a novel cationic-based nanoemulsion vaccine containing bile salts (NEB) coated by chitosan (CS) and determined its physicochemical characterization, morphology, in vitro mucoadhesive property, permeability, and acid-base tolerance. In addition, the efficacy of NEB-CS as an oral vaccination for Nile tilapia was evaluated in order to investigate the innate immune response and protection against S. agalactiae. The groups of fish consisted of: (1) deionized water as a non-vaccinated control (Control); (2) an inactivated vaccine formulated from formalin-killed bacteria (IB); and (3) a novel cationic-based nanoemulsion vaccine containing bile salts (NEB) coated by chitosan (CS). The control, IB, and NEB-CS were incorporated into commercial feed pellets and fed to Nile tilapia. In addition, we evaluated the serum bactericidal activity (SBA) for 14 days post-vaccination (dpv) and protective efficacy for 10 days post-challenge, respectively. The mucoadhesiveness, permeability, and absorption within the tilapia intestine were also assessed in vivo. The NEB-CS vaccine appeared spherical, with the nanoparticles having a size of 454.37 nm and a positive charge (+47.6 mV). The NEB-CS vaccine had higher levels of mucoadhesiveness and permeability than the NEB (p < 0.05). The relative percent survival (RPS) of IB and NEB-CS, when administered orally to fish, was 48% and 96%, respectively. Enhanced SBA was noted in the NEB-CS and IB vaccine groups compared to the control group. The results demonstrate that a feed-based NEB-CS can improve the mucoadhesiveness, permeability, and protective efficacy of the vaccine, and appear to be a promising approach to protecting tilapia in aquaculture against streptococcosis.


Assuntos
Quitosana , Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Tilápia , Animais , Streptococcus agalactiae , Vacinas Bacterianas , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária
8.
Fish Shellfish Immunol ; 138: 108813, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182796

RESUMO

The occurrence of francisellosis caused by Francisella orientalis sp. nov. (Fo) and columnaris disease caused by Flavobacterium oreochromis (For) is negatively impacting Nile tilapia (Oreochromis niloticus) production, especially when high stocking densities are used. A new and innovative bivalent mucoadhesive nanovaccine was developed in this study for immersion vaccination of tilapia against francisellosis and columnaris disease. It was shown to have the potential to improve both innate and adaptive immunity in vaccinated Nile tilapia. It increased innate immune parameters, such as lysozyme activity, bactericidal activity, phagocytosis, phagocytic index, and total serum IgM antibody levels. Additionally, the vaccine was effective in elevating specific adaptive immune responses, including IgM antibody levels against Fo and For vaccine antigens and upregulating immune-related genes IgM, IgT, CD4+, MHCIIα, and TCRß in the head kidney, spleen, peripheral blood leukocytes, and gills of vaccinated fish. Furthermore, fish vaccinated with the mucoadhesive nanovaccine showed higher survival rates and relative percent survival after being challenged with either single or combined infections of Fo and For. This vaccine is anticipated to be beneficial for large-scale immersion vaccination of tilapia and may be a strategy for shortening vaccination times and increasing immune protection against francisellosis and columnaris diseases in tilapia aquaculture.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Tilápia , Animais , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Vacinas Bacterianas
9.
Animals (Basel) ; 13(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37106927

RESUMO

The aim of the present study was to optimize a masculinization platform for the production of all-male red tilapia fry by oral administration of 30 and 60 ppm of MT and alkyl polyglucoside nanostructured lipid carriers (APG-NLC) loaded with MT, respectively, for 14 and 21 days. The characterization, encapsulation efficiency and release kinetics of MT in lipid-based nanoparticles were assessed in vitro. The results showed that the MT-loaded nanoparticles were spherical, ranging from 80 to 125 nm in size, and had a negative charge with a narrow particle distribution. The APG-NLC loaded with MT provided higher physical stability and encapsulation efficacy than the NLC. The release rate constants of MT from MT-NLC and MT-APG-NLC were higher than those of free MT, which is insoluble in aqueous media. There was no significant difference in survival between the fish administered MT or the those fed orally with MT-APG-NLC fish. According to the logistic regression analysis, the sex reversal efficacy of MT-APG-NLC (30 ppm) and MT (60 ppm), resulted in significantly higher numbers of males after 21 days of treatment compared with the controls. The production cost of MT-APG-NLC (30 ppm) after 21 days of treatment was reduced by 32.9% compared with the conventional MT treatment group (60 ppm). In all the treatments, the length-weight relationship (LWR) showed negatively allomeric growth behavior (b < 3), with a relative condition factor (Kn) of more than 1. Therefore, MT-APG-NLC (30 ppm) would seem to be a promising, cost-effective way to reduce the dose of MT used for the masculinization of farmed red tilapia.

10.
Fish Shellfish Immunol ; 131: 972-979, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36351543

RESUMO

Tilapia lake virus (TiLV), an enveloped negative-sense single-stranded RNA virus, causes tilapia lake virus disease (TiLVD), which is associated with mass mortality and severe economic impacts in wild and farmed tilapia industries worldwide. In this study, we developed a chitosan nanoparticle TiLV immersion vaccine and assessed the efficacy of the vaccine in laboratory and field trials. Transmission electron microscopy showed that the inactivated vaccine had a particle size of 210.3 nm, while the nano inactivated vaccine had a spherical shape with a diameter of 120.4 nm. Further analysis using fluorescent staining and immunohistochemistry analysis revealed the mucoadhesive properties of the nanovaccine (CN-KV) through fish gills. We assessed the efficacy of an immersion-based TiLV nanovaccine using a cohabitation challenge model. The fish that received the nanovaccine showed better relative percent survival (RPS) at 68.17% compared with the RPS of the inactivated virus vaccine (KV) group at 25.01%. The CN-KV group also showed a higher TiLV-specific antibody response than the control and KV groups (p < 0.05). Importantly, under field conditions, the fish receiving the CN-KV nanovaccine had better RPS at 52.2% than the nonvaccinated control group. Taken together, the CN-KV nanovaccinated fish showed better survival and antibody response than the control and KV groups both under laboratory control challenge conditions and field trials. The newly developed immersion-based nanovaccine is easy to administer in small fish, is less labor-intensive, and allows for mass vaccination to protect fish from TiLV infection.


Assuntos
Quitosana , Doenças dos Peixes , Nanopartículas , Tilápia , Animais , Imersão , Vacinas de Produtos Inativados
11.
Fish Shellfish Immunol ; 129: 30-35, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988712

RESUMO

Red tilapia (Oreochromis sp.), one of the important freshwater fish species in fish farming in Thailand, has for long been suffering from a serious bacterial disease named epizootic ulcerative syndrome and hemorrhagic septicemia. The disease is mainly caused by Aeromonas veronii. Vaccine is proposed to be a major impact tool for sustainable control and prevention strategies. Vaccination by immersion has many benefits over injection. However, the conventional immersion method suffers from a low potency due to the inefficient uptake of antigens across mucosal tissue. Here, we developed a chitosan-polymer based nanovaccine together with an efficient delivery vehicle to enhance the immunogenicity of immersion vaccination, increasing bioavailability and inducing local immune responses during transit to mucosal inductive immune sites. The physiochemical properties of nanovaccine, which was modified on surface particle by using a mucoadhesive polymer, were assessed for size, zeta potential, and particle distribution. Our study demonstrated by SEM image and microscopic fluorescence image that nanovaccine greatly increased the binding and penetrating ability into gills when compared with formalin killed vaccine. The nano-sized particles were well dispersed in water and trapped in core nanoparticle as confirmed by TEM image. The efficacy of vaccine was performed by immersion challenge with virulent A.veronii after 30 days post vaccination in tilapia. The result revealed a high level of mortality in the control, empty-polymeric nanovaccine and formalin killed bacterin vaccine groups. A high relative percentage survival (RPS) of vaccinated fish was noted with chitosan-polymer based nanovaccine. Our studies indicated that this chitosan-polymer based nanovaccine derived from cell fragments and supernatant was the improved version of the conventional formalin killed vaccine. The chitosan polymer based particle could increase the efficacy of nanovaccine toward the target mucosal membrane and enhance protection against A. veronii infection in red tilapia.


Assuntos
Quitosana , Ciclídeos , Doenças dos Peixes , Tilápia , Aeromonas veronii , Animais , Vacinas Bacterianas , Formaldeído , Imersão , Polímeros , Vacinas de Produtos Inativados , Água
12.
Sci Rep ; 12(1): 13623, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948591

RESUMO

In humans, peripheral blood cytokeratin 19 (CK19) mRNA-positive circulating tumor cells (CTCs) was utilized to identify early-stage breast cancer patients with micrometastatic disease who are at risk for disease progression and monitor treatment response in patients with advanced disease. To our knowledge, there has been little research regarding CK19 in canine mammary tumors (CMTs) using molecular methods. A droplet digital PCR (ddPCR) is proposed as a precise and sensitive quantification of nucleic acid targets. Hence, this study aimed to validate a newly designed assay for CK19 detection in canine blood and mammary tissue, along with the reference gene HPRT, by ddPCR. All primers and probes showed a precise match with the exon region of target genes. The assay exhibited PCR efficacy of 90.4% and 91.0% for CK19 and HPRT amplifications with linearity, respectively. The annealing temperature (Ta) for duplex ddPCR was 55 °C, providing the highest concentrations of both genes tested by the synthetic plasmid DNA. The limit of detection (LOD) of CK19 and HPRT were 2.16 ± 1.27 and 2.44 ± 1.31 copies/µL, respectively. Finally, the ddPCR assay was validated with canine peripheral blood, non-neoplastic mammary tissues and spiked samples. Our findings provide a new platform for CK19 studies in CMT diagnosis through blood and mammary tissues.


Assuntos
Queratina-19 , Glândulas Mamárias Humanas , Animais , Cães , Humanos , Hipoxantina Fosforribosiltransferase , Queratina-19/genética , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/genética
13.
Fish Shellfish Immunol ; 127: 633-646, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779812

RESUMO

Columnaris is a bacterial disease, found in freshwater fish, caused by Flavobacterium oreochromis. The disease has a devastating impact on a range of cultured and wild freshwater fish species e.g. Lates calcarifer (Asian sea bass), which is a serious economic losses to the freshwater aquaculture in Thailand. The disease can be prevented by an efficacious vaccine, however, no licensed effective vaccine is available to date. Current study was based on the development of a novel mucoadhesive nano-encapsulated vaccine (EncapFlavoNP++), where, cationic lipid-based nanoparticles were combined with an antigen obtained from F. oreochromis. Various parameters including transmission electron microscopy (TEM), physiochemical properties; zeta potential, and polydispersity index were determined. The TEM results depicted well-formed circular-shaped nano-encapsulates complexed with cationic lipid surfactants. The average diameter of the molecules was 200 nm, having a zeta potential of 31.82 mV, while, the polydispersity index (PDI) was 0.31. The in vivo study lasted for 8 weeks, the immunologic and protective potentials of the prepared molecules were determined by challenging the fish for 8 weeks. The most effective dilutions of EncapFlavoNP++ solution were 1:100 and 1:200, which significantly improved the efficacy of the immunity by increasing the level of antibody specific to F. oreochromis. A trend of upregulation was found in the immune-related genes including immunoglobulin M heavy chain (IgM), major histocompatibility complex class IIα molecules (MHC-IIα), and dendritic cell specific transcript (DCs) in gills, skin, liver, peripheral blood lymphocytes (PBLs), head kidneys, and spleen as compared to the control group (P < 0.05 and P < 0.01). Upon immunization with EncapFlavoNP++ solution at the dilution of 1:100 and 1:200, the significant increase in survival rate (SR) and relative percent survival (RPS) were found in fish challenged with virulent F. oreochromis bacterium (SR 72.50% and RPS 62.07) and (SR 65.83% and RPS 52.87), respectively as compared to the control group (P < 0.05). It can be concluded that immunization with EncapFlavoNP++ solution has significant immunologic and protective effects against Columnaris disease. Furthermore, the prepared vaccine candidate has more potential as compared to whole-cell immersion vaccination (FK-WC). It can be used on a large scale in the freshwater aquaculture industry to boost immunity against Columnaris disease.


Assuntos
Bass , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Vacinas Bacterianas , Flavobacterium , Imersão , Lipídeos , Vacinação/métodos , Vacinação/veterinária
14.
Fish Shellfish Immunol ; 127: 1051-1060, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35872335

RESUMO

Francisella noatunensis subsp. orientalis (Fno) is one of the infectious diseases that causes economic losses associated with tilapia mortality. Even though direct immersion administration of vaccines is more practicable for small fish and fry compared with oral and injection vaccination in the fields, the efficacy is still insufficient due to lower potency of antigen uptake. Herein, we accomplished the development of a mucoadhesive nanovaccine platform using cetyltrimethylammonium bromide (CTAB), a cationic surfactant, to improve the efficiency of immersion vaccination against Fno in tilapia. Cationic Fno nanovaccine (CAT-Fno-NV) was prepared though emulsification using an ultrasonic method. In our investigation, the CAT-Fno-NV increased the opportunity of Fno vaccine uptake by extending the contact time between vaccine and mucosal surface of fish gills and enhancing the protective efficacy against Fno infection. Fish were vaccinated with the CAT-Fno-NV by a direct immersion protocol. The challenge trial by Fno injection revealed that CAT-Fno-NV at the concentration 1:100 ratio (approximately 1 × 106 cfu/mL) had the highest efficacy to protect fish from Fno infection at day 30 after post challenge period according to the total number of Fno detected in head kidney, spleen and liver. A significant upregulation of IgM gene was observed in gills, skin, head kidney, serum and peripheral blood lymphocytes (PBLs) and spleen tissues treated with WC and CAT-Fno-NV (1:100) vaccines, while IgT gene was highly expressed in only gills and skin tissues for treated WC and CAT-Fno-NV (1:100) groups. We anticipate that the cationic surfactant-based nanovaccine developed in this study could become an efficient alternative for direct immersion vaccination to induce humoral immune responses against Fno in vaccinated tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Francisella , Infecções por Bactérias Gram-Negativas , Tilápia , Animais , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Imersão , Tensoativos , Vacinação/métodos , Vacinação/veterinária
15.
EMBO Mol Med ; 14(8): e15418, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35758207

RESUMO

Immunotherapy is a powerful tool for cancer treatment, but the pleiotropic nature of cytokines and immunological agents strongly limits clinical translation and safety. To address this unmet need, we designed and characterised a systemically targeted cytokine gene delivery system through transmorphic encapsidation of human recombinant adeno-associated virus DNA using coat proteins from a tumour-targeted bacteriophage (phage). We show that Transmorphic Phage/AAV (TPA) particles provide superior delivery of transgenes over current phage-derived vectors through greater diffusion across the extracellular space and improved intracellular trafficking. We used TPA to target the delivery of cytokine-encoding transgenes for interleukin-12 (IL12), and novel isoforms of IL15 and tumour necrosis factor alpha (TNF α ) for tumour immunotherapy. Our results demonstrate selective and efficient gene delivery and immunotherapy against solid tumours in vivo, without harming healthy organs. Our transmorphic particle system provides a promising modality for safe and effective gene delivery, and cancer immunotherapies through cross-species complementation of two commonly used viruses.


Assuntos
Bacteriófagos , Neoplasias , Bacteriófagos/genética , Citocinas/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Transgenes
16.
Metab Brain Dis ; 37(5): 1465-1476, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35353275

RESUMO

Neurodegenerative disease, for instance, Parkinson's disease (PD), is associated with substantia nigra dopaminergic neuronal loss with subsequent striatal dopamine reduction, leading to motor deficits. Currently, there is no available effective therapy for PD; thus, novel therapeutic agents such as natural antioxidants with neuroprotective effects are emerging. Alpha-mangostin (αM) is a xanthone derivative compound from mangosteen peel with a cytoprotective effect depicted in neurodegenerative disease models. However, αM has low aqueous solubility and low biodistribution in the brain. Nanostructured lipid carriers (NLC) have been used to encapsulate bioactive compounds delivered to target organs to improve the oral bioavailability and effectiveness. This study aimed to investigate the effect of αM and αM encapsulated in NLC (αM-NLC) in mice with rotenone-induced PD-like neurodegeneration. Forty male ICR mice were divided into normal, PD, PD + αM, and PD + αM-NLC groups. Vehicle, αM (25 mg/kg/48 h), and αM-NLC (25 mg/kg/48 h) were orally administered, along with PD induction by intraperitoneal injection of rotenone (2.5 mg/kg/48 h) for 4 consecutive weeks. Motor abilities were assessed once a week using rotarod and hanging wire tests. Biochemical analysis of brain oxidative status was conducted, and neuronal populations in substantia nigra par compacta (SNc), striatum, and motor cortex were evaluated using Nissl staining. Tyrosine hydroxylase (TH) immunostaining of SNc and striatum was also evaluated. Results showed that rotenone significantly induced motor deficits concurrent with significant SNc, striatum, and motor cortex neuronal reduction and significantly decreased TH intensity in SNc (p < 0.05). The significant reduction of brain superoxide dismutase activity (p < 0.05) was also detected. Administrations of αM and αM-NLC significantly reduced motor deficits, prevented the reduction of TH intensity in SNc and striatum, and prevented the reduction of neurons in SNc (p < 0.05). Only αM-NLC significantly prevented the reduction of neurons in both striatum and motor cortex (p < 0.05). These were found concurrent with significantly reduced malondialdehyde level and increased catalase and superoxide dismutase activities (p < 0.05). Therefore, this study depicted the neuroprotective effect of αM and αM-NLC against rotenone-induced PD-like neurodegeneration in mice. We indicated an involvement of NLC, emphasizing the protective effect of αM against oxidative stress. Moreover, αM-NLC exhibited broad protection against rotenone-induced neurodegeneration that was not limited to nigrostriatal structures and emphasized the benefit of NLC in enhancing αM neuroprotective effects.


Assuntos
Nanoestruturas , Fármacos Neuroprotetores , Doença de Parkinson Secundária , Xantonas , Animais , Modelos Animais de Doenças , Dopamina , Neurônios Dopaminérgicos , Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Rotenona , Substância Negra , Superóxido Dismutase/metabolismo , Distribuição Tecidual , Tirosina 3-Mono-Oxigenase/metabolismo , Xantonas/farmacologia , Xantonas/uso terapêutico
17.
Foods ; 11(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430911

RESUMO

Whiteleg shrimp (Penaeus vannamei) have been vulnerable to the stress induced by different aquaculture operations such as capture, handling, and transportation. In this study, we developed a novel clove oil-nanostructured lipid carrier (CO-NLC) to enhance the water-soluble capability and improve its anesthetic potential in whiteleg shrimp. The physicochemical characteristics, stability, and drug release capacity were assessed in vitro. The anesthetic effect and biodistribution were fully investigated in the shrimp body as well as the acute multiple-dose toxicity study. The average particle size, polydispersity index, and zeta potential value of the CO-NLCs were 175 nm, 0.12, and -48.37 mV, respectively, with a spherical shape that was stable for up to 3 months of storage. The average encapsulation efficiency of the CO-NLCs was 88.55%. In addition, the CO-NLCs were able to release 20% of eugenol after 2 h, which was lower than the standard (STD)-CO. The CO-NLC at 50 ppm observed the lowest anesthesia (2.2 min), the fastest recovery time (3.3 min), and the most rapid clearance (30 min) in shrimp body biodistribution. The results suggest that the CO-NLC could be a potent alternative nanodelivery platform for increasing the anesthetic activity of clove oil in whiteleg shrimp (P. vannamei).

18.
Biochim Biophys Acta Gen Subj ; 1866(2): 130047, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34757163

RESUMO

BACKGROUND: A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed. METHODS: We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20. RESULTS: The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability.


Assuntos
Engenharia Tecidual
19.
Antibiotics (Basel) ; 10(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34827312

RESUMO

Resistance to extended-spectrum cephalosporins (ESC) and carbapenems in Escherichia coli (E. coli), increasingly identified in small animals, indicates a crisis of an antimicrobial resistance situation in veterinary medicine and public health. This study aimed to characterise the genetic features of ESC-resistant E. coli isolated from cats and dogs with urinary tract infections in Thailand. Of 72 ESC-resistant E. coli isolated from diagnostic samples (2016-2018), blaCTX-M including group 1 (CTX-M-55, -15 and -173) and group 9 (CTX-M-14, -27, -65 and -90) variants were detected in 47 isolates (65.28%) using PCR and DNA sequencing. Additional antimicrobial resistance genes, including plasmid-mediated AmpC (CIT and DHA), blaNDM-5, mcr-3, mph(A) and aac(6')-Ib-cr, were detected in these isolates. Using a broth microdilution assay, all the strains exhibited multidrug-resistant phenotypes. The phylogroups were F (36.11%), A (20.83%), B1 (19.44%), B2 (19.44%) and D (4.17%), with several virulence genes, plasmid replicons and an integrase gene. The DNA fingerprinting using a repetitive extragenic palindromic sequence-PCR presented clonal relationships within phylogroups. Multiple human-associated, high-risk ExPEC clones associated with multidrug resistance, including sequence type (ST) 38, ST131, ST224, ST167, ST354, ST410, ST617 and ST648, were identified, suggesting clonal dissemination. Dogs and cats are a potential reservoir of ESC-resistant E. coli and significant antimicrobial resistance genes.

20.
Vaccines (Basel) ; 9(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34835184

RESUMO

Immersion vaccination with a biomimetic mucoadhesive nanovaccine has been shown to induce a strong mucosal immune response against columnaris disease, a serious bacterial disease in farmed red tilapia caused by Flavobacterium columnare. However, the induction of a systemic immune response by the vaccine is yet to be investigated. Here, we examine if a specific humoral immune response is stimulated in tilapia by a biomimetic-mucoadhesive nanovaccine against Flavobacterium columnare using an indirect-enzyme-linked immunosorbent assay (ELISA), serum bactericidal activity (SBA) and the expression of immune-related genes within the head-kidney and spleen, together with assessing the relative percent survival of vaccinated fish after experimentally infecting them with F. columnare. The anti-IgM antibody titer of fish at 14 and 21 days post-vaccination was significantly higher in chitosan complex nanoemulsion (CS-NE) vaccinated fish compared to fish vaccinated with the formalin-killed vaccine or control fish, supporting the serum bactericidal activity results at these time points. The cumulative mortality of the unvaccinated control fish was 87% after challenging fish with the pathogen, while the cumulative mortality of the CS-NE vaccinated group was 24%, which was significantly lower than the formalin-killed vaccinated and control fish. There was a significant upregulation of IgM, IgT, TNF α, and IL1-ß genes in the spleen and kidney of vaccinated fish. Significant upregulation of IgM and IgT genes was observed in the spleen of CS-NE vaccinated fish. The study confirmed the charged-chitosan-based mucoadhesive nanovaccine to be an effective platform for immersion vaccination of tilapia, with fish generating a humoral systemic immune response against columnaris disease in vaccinated fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA