Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomass Bioenergy ; 112: 29-36, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29725163

RESUMO

This study compares dry matter losses and quality changes during the storage of SRC willow as chips and as rods. A wood chip stack consisting of approximately 74 tonnes of fresh biomass, or 31 tonnes dry matter (DM) was built after harvesting in the spring. Three weeks later, four smaller stacks of rods with an average weight of 0.8 tonnes, or 0.4 tonnes DM were built. During the course of the experiment temperature recorders placed in the stacks found that the wood chip pile reached 60 °C within 10 days of construction, but the piles of rods remained mostly at ambient temperatures. Dry matter losses were calculated by using pre-weighed independent samples within the stacks and by weighing the whole stack before and after storage. After 6 months the wood chip stack showed a DM loss of between 19.8 and 22.6%, and mean losses of 23.1% were measured from the 17 independent samples. In comparison, the rod stacks showed an average stack DM loss of between 0 and 9%, and between 1.4% and 10.6% loss from the independent samples. Analysis of the stored material suggests that storing willow in small piles of rods produces a higher quality fuel in terms of lower moisture and ash content; however, it has a higher fine content compared to storage in chip form. Therefore, according to the two storage methods tested here, there may be a compromise between maximising the net dry matter yield from SRC willow and the final fine content of the fuel.

2.
Bioenergy Res ; 10(2): 353-362, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32104527

RESUMO

This study explores the use of static chamber boxes to detect whether there are fugitive emissions of greenhouse gases (GHGs) from a willow chip storage heap. The results from the boxes were compared with those from 3-m stainless steel probes inserted into the core of the heap horizontally and vertically at intervals. The results from probes showed that there were increases of carbon dioxide (CO2) concentrations in the heap over the first 10 days after heap establishment, which were correlated with a temperature rise to 60 °C. As the CO2 declined, there was a small peak in methane (CH4) concentration in probes orientated vertically in the heap. Static chambers positioned at the apex of the heap detected some CO2 fluxes as seen in the probes; however, the quantities were small and random in nature. A small (maximum 5 ppm) flux in CH4 occurred at the same time as the probe concentrations peaked. Overall, the static chamber method was not effective in monitoring fluxes from the heap as there was evidence that gases could enter and leave around the edges of the chambers during the course of the experiment. In general, the use of standard (25 cm high) static chambers for monitoring fluxes from wood chip heaps is not recommended.

3.
Bioenergy Res ; 9: 288-302, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27398132

RESUMO

This study examined the dry matter losses and the greenhouse gas (GHG) concentrations within two short rotation coppice (SRC) willow wood chip storage heaps. One heap was built on a grassland area (East Midlands) and the other (Rothamsted) on a concrete hard standing. A series of 1- and 3-m probes were embedded in the heaps in order to retrieve gas samples for analysis, and pre-weighed net bags were positioned in the core of the heap to detect dry matter losses. The bagged samples showed dry matter losses of 18 and 19 % in the East Midlands and Rothamsted heaps after 210 and 97 days storage, respectively. The Rothamsted heap showed a whole-heap dry matter loss of 21 %. During this time, the wood chips dried from 54 to 39 % moisture content in the East Midlands heap and 50 to 43 % at Rothamsted. The results from analysing the whole Rothamsted heap indicated an overall loss of 1.5 GJ per tonne stored, although measurements from bagged samples in the core suggested that the chips dried sufficiently to have a minimal energy loss from storage. The process of mixing the heap, however, led to incorporation of wet outer layers and hence the average moisture content was higher in an average sample of chip. After establishment of the heaps, the temperature rose rapidly and this correlated with a peak in carbon dioxide (CO2) concentration within the heap. A peak in methane (CH4) concentration was also detected in both heaps, though more noticeably in the East Midlands heap after around 55 days. In both instances, the peak CH4 concentration occurred as CO2 concentrations dropped, suggesting that after an active period of aerobic decomposition in the first 2 months of storage, the conditions in the heap became anaerobic. The results from this study suggest that outside wood chip storage is not an efficient method of storing biomass, though this may be location-specific as there are some studies showing lower dry matter losses. It is necessary to explore other methods of harvesting SRC to minimise losses and optimise land use efficiency. Further research is required to detect whether there are fugitive emissions of CH4 from wood chip heaps, as this will compromise the net GHG savings from utilising the biomass stored in this way.

4.
Bioenergy Res ; 9(3): 820-835, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-32355533

RESUMO

A life cycle assessment (LCA) approach was used to examine the greenhouse gas (GHG) emissions and energy balance of short rotation coppice (SRC) willow for heat production. The modelled supply chain includes cutting multiplication, site establishment, maintenance, harvesting, storage, transport and combustion. The relative impacts of dry matter losses and methane emissions from chip storage were examined from a LCA perspective, comparing the GHG emissions from the SRC supply chain with those of natural gas for heat generation. The results show that SRC generally provides very high GHG emission savings of over 90 %. The LCA model estimates that a 1, 10 and 20 % loss of dry matter during storage causes a 1, 6 and 11 % increase in GHG emissions per MWh. The GHG emission results are extremely sensitive to emissions of methane from the wood chip stack: If 1 % of the carbon within the stack undergoes anaerobic decomposition to methane, then the GHG emissions per MWh are tripled. There are some uncertainties in the LCA results, regarding the true formation of methane in wood chip stacks, non-CO2 emissions from combustion, N2O emissions from leaf fall and the extent of carbon sequestered under the crop, and these all contribute a large proportion of the life cycle GHG emissions from cultivation of the crop.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA