Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 146(2): 200-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26701794

RESUMO

BACKGROUND: Sialyllactose is a key human milk oligosaccharide and consists of sialic acid (SA) bound to a lactose molecule. Breastfed infants have increased accumulation of ganglioside-bound SA compared with formula-fed infants. OBJECTIVE: This study aimed to determine whether different isomers of sialyllactose enrich brain SA and modulate the microbiome of developing neonatal piglets. METHODS: Day-old pigs were randomly allocated to 6 diets (control, 2 or 4 g 3'-sialyllactose/L, 2 or 4 g 6'-sialyllactose/L, or 2 g polydextrose/L + 2 g galacto-oligosaccharides/L; n = 9) and fed 3 times/d for 21 d. Pigs were killed, and the left hemisphere of the brain was dissected into cerebrum, cerebellum, corpus callosum, and hippocampus regions. SA was determined by using a modified periodic acid-resorcinol reaction. Microbial composition of the intestinal digesta was analyzed with the use of 16S ribosomal DNA Illumina sequencing. RESULTS: Dietary sialyllactose did not affect feed intake, growth, or fecal consistency. Ganglioside-bound SA in the corpus callosum of pigs fed 2 g 3'-sialyllactose or 6'-sialyllactose/L increased by 15% in comparison with control pigs. Similarly, ganglioside-bound SA in the cerebellum of pigs fed 4 g 3'-sialyllactose/L increased by 10% in comparison with control pigs. Significant (P < 0.05, Adonis Test) microbiome differences were observed in the proximal and distal colons of piglets fed control compared with 4-g 6'-sialyllactose/L formulas. Differences were attributed to an increase in bacterial taxa belonging to species Collinsella aerofaciens (phylum Actinobacteria), genera Ruminococcus and Faecalibacterium (phylum Firmicutes), and genus Prevotella (phylum Bacteroidetes) (Wald test, P < 0.05, DeSeq2) compared with piglets fed the control diet. Taxa belonging to families Enterobacteriaceae and Enterococcaceae (phylum Proteobacteria), as well as taxa belonging to family Lachnospiraceae and order Lactobacillales (phylum Firmicutes), were 2.3- and 4-fold lower, respectively, in 6'-sialyllactose-fed piglets than in controls. CONCLUSIONS: Supplementation of formula with 3'- or 6'-sialyllactose can enrich ganglioside SA in the brain and modulate gut-associated microbiota in neonatal pigs. We propose 2 potential routes by which sialyllactose may positively affect the neonate: serving as a source of SA for neurologic development and promoting beneficial microbiota.


Assuntos
Encéfalo/efeitos dos fármacos , Colo/efeitos dos fármacos , Suplementos Nutricionais , Gangliosídeos/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fórmulas Infantis , Lactose/análogos & derivados , Ácidos Siálicos/farmacologia , Animais , Bactérias/crescimento & desenvolvimento , Encéfalo/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Colo/microbiologia , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Dieta , Isomerismo , Lactose/farmacologia , Leite Humano/química , Oligossacarídeos/farmacologia , Suínos
2.
Sci Transl Med ; 7(276): 276ra24, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25717097

RESUMO

To gain insights into the interrelationships among childhood undernutrition, the gut microbiota, and gut mucosal immune/barrier function, we purified bacterial strains targeted by immunoglobulin A (IgA) from the fecal microbiota of two cohorts of Malawian infants and children. IgA responses to several bacterial taxa, including Enterobacteriaceae, correlated with anthropometric measurements of nutritional status in longitudinal studies. The relationship between IgA responses and growth was further explained by enteropathogen burden. Gnotobiotic mouse recipients of an IgA(+) bacterial consortium purified from the gut microbiota of undernourished children exhibited a diet-dependent enteropathy characterized by rapid disruption of the small intestinal and colonic epithelial barrier, weight loss, and sepsis that could be prevented by administering two IgA-targeted bacterial species from a healthy microbiota. Dissection of a culture collection of 11 IgA-targeted strains from an undernourished donor, sufficient to transmit these phenotypes, disclosed that Enterobacteriaceae interacted with other consortium members to produce enteropathy. These findings indicate that bacterial targets of IgA responses have etiologic, diagnostic, and therapeutic implications for childhood undernutrition.


Assuntos
Bactérias/classificação , Dieta , Gastroenteropatias/microbiologia , Imunoglobulina A/metabolismo , Kwashiorkor/microbiologia , Animais , Criança , Estudos de Coortes , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Vida Livre de Germes , Humanos , Lactente , Malaui , Camundongos Endogâmicos C57BL , Consórcios Microbianos , Fenótipo
3.
Nature ; 510(7505): 417-21, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24896187

RESUMO

Therapeutic food interventions have reduced mortality in children with severe acute malnutrition (SAM), but incomplete restoration of healthy growth remains a major problem. The relationships between the type of nutritional intervention, the gut microbiota, and therapeutic responses are unclear. In the current study, bacterial species whose proportional representation define a healthy gut microbiota as it assembles during the first two postnatal years were identified by applying a machine-learning-based approach to 16S ribosomal RNA data sets generated from monthly faecal samples obtained from birth onwards in a cohort of children living in an urban slum of Dhaka, Bangladesh, who exhibited consistently healthy growth. These age-discriminatory bacterial species were incorporated into a model that computes a 'relative microbiota maturity index' and 'microbiota-for-age Z-score' that compare postnatal assembly (defined here as maturation) of a child's faecal microbiota relative to healthy children of similar chronologic age. The model was applied to twins and triplets (to test for associations of these indices with genetic and environmental factors, including diarrhoea), children with SAM enrolled in a randomized trial of two food interventions, and children with moderate acute malnutrition. Our results indicate that SAM is associated with significant relative microbiota immaturity that is only partially ameliorated following two widely used nutritional interventions. Immaturity is also evident in less severe forms of malnutrition and correlates with anthropometric measurements. Microbiota maturity indices provide a microbial measure of human postnatal development, a way of classifying malnourished states, and a parameter for judging therapeutic efficacy. More prolonged interventions with existing or new therapeutic foods and/or addition of gut microbes may be needed to achieve enduring repair of gut microbiota immaturity in childhood malnutrition and improve clinical outcomes.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodiversidade , Transtornos da Nutrição do Lactente/microbiologia , Microbiota , Bactérias/classificação , Bactérias/genética , Bangladesh , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Lactente , Transtornos da Nutrição do Lactente/dietoterapia , Masculino , Modelos Biológicos , Estado Nutricional , RNA Ribossômico 16S/genética
4.
Science ; 339(6119): 548-54, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23363771

RESUMO

Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin pairs remained well nourished, whereas 43% became discordant, and 7% manifested concordance for acute malnutrition. Both children in twin pairs discordant for kwashiorkor were treated with a peanut-based, ready-to-use therapeutic food (RUTF). Time-series metagenomic studies revealed that RUTF produced a transient maturation of metabolic functions in kwashiorkor gut microbiomes that regressed when administration of RUTF was stopped. Previously frozen fecal communities from several discordant pairs were each transplanted into gnotobiotic mice. The combination of Malawian diet and kwashiorkor microbiome produced marked weight loss in recipient mice, accompanied by perturbations in amino acid, carbohydrate, and intermediary metabolism that were only transiently ameliorated with RUTF. These findings implicate the gut microbiome as a causal factor in kwashiorkor.


Assuntos
Doenças em Gêmeos/microbiologia , Trato Gastrointestinal/microbiologia , Kwashiorkor/microbiologia , Metagenoma , Aminoácidos/metabolismo , Animais , Arachis , Metabolismo dos Carboidratos , Pré-Escolar , Fezes/microbiologia , Feminino , Vida Livre de Germes , Humanos , Lactente , Kwashiorkor/dietoterapia , Kwashiorkor/epidemiologia , Estudos Longitudinais , Malaui/epidemiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Nature ; 486(7402): 222-7, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22699611

RESUMO

Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, here we characterize bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy children and adults from the Amazonas of Venezuela, rural Malawi and US metropolitan areas and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial assemblages and functional gene repertoires were noted between US residents and those in the other two countries. These distinctive features are evident in early infancy as well as adulthood. Our findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations and the impact of westernization.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Intestinos/microbiologia , Metagenoma , Adolescente , Adulto , Fatores Etários , Idoso , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Geografia , Humanos , Lactente , Malaui , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S/genética , Gêmeos Dizigóticos , Gêmeos Monozigóticos , Estados Unidos , Venezuela , Adulto Jovem
6.
Sci Transl Med ; 3(106): 106ra106, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22030749

RESUMO

Understanding how the human gut microbiota and host are affected by probiotic bacterial strains requires carefully controlled studies in humans and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks before, 7 weeks during, and 4 weeks after consumption of a commercially available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied before and after gavage with all five sequenced FMP strains. No significant changes in bacterial species composition or in the proportional representation of genes encoding known enzymes were observed in the feces of humans consuming the FMP. Only minimal changes in microbiota configuration were noted in mice after single or repeated gavage with the FMP consortium. However, RNA-Seq analysis of fecal samples and follow-up mass spectrometry of urinary metabolites disclosed that introducing the FMP strains into mice results in significant changes in expression of microbiome-encoded enzymes involved in numerous metabolic pathways, most prominently those related to carbohydrate metabolism. B. animalis subsp. lactis, the dominant persistent member of the FMP consortium in gnotobiotic mice, up-regulates a locus in vivo that is involved in the catabolism of xylooligosaccharides, a class of glycans widely distributed in fruits, vegetables, and other foods, underscoring the importance of these sugars to this bacterial species. The human fecal metatranscriptome exhibited significant changes, confined to the period of FMP consumption, that mirror changes in gnotobiotic mice, including those related to plant polysaccharide metabolism. These experiments illustrate a translational research pipeline for characterizing the effects of FMPs on the human gut microbiome.


Assuntos
Produtos Fermentados do Leite/microbiologia , Trato Gastrointestinal/microbiologia , Metagenoma/fisiologia , Animais , Bifidobacterium , Feminino , Vida Livre de Germes , Humanos , Lactobacillus , Masculino , Metagenoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Probióticos/administração & dosagem , Gêmeos Monozigóticos
7.
Cell Host Microbe ; 8(3): 292-300, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20833380

RESUMO

Disruption of homeostasis between the host immune system and the intestinal microbiota leads to inflammatory bowel disease (IBD). Whether IBD is instigated by individual species or disruptions of entire microbial communities remains controversial. We characterized the fecal microbial communities in the recently described T-bet(-/-) ×Rag2(-/-) ulcerative colitis (TRUC) model driven by T-bet deficiency in the innate immune system. 16S rRNA-based analysis of TRUC and Rag2(-/-) mice revealed distinctive communities that correlate with host genotype. The presence of Klebsiella pneumoniae and Proteus mirabilis correlates with colitis in TRUC animals, and these TRUC-derived strains can elicit colitis in Rag2(-/-) and WT adults but require a maternally transmitted endogenous microbial community for maximal intestinal inflammation. Cross-fostering experiments indicated a role for these organisms in maternal transmission of disease. Our findings illustrate how gut microbial communities work in concert with specific culturable colitogenic agents to cause IBD.


Assuntos
Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Enterobacteriaceae/fisiologia , Intestinos/microbiologia , Klebsiella pneumoniae/isolamento & purificação , Interações Microbianas , Proteus mirabilis/isolamento & purificação , Animais , Colite Ulcerativa/terapia , Colo/microbiologia , Colo/patologia , Proteínas de Ligação a DNA/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Enterobacteriaceae/isolamento & purificação , Fezes/microbiologia , Feminino , Hibridização in Situ Fluorescente , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Proteínas com Domínio T/genética
9.
Proc Natl Acad Sci U S A ; 107(16): 7503-8, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20363958

RESUMO

We deeply sampled the organismal, genetic, and transcriptional diversity in fecal samples collected from a monozygotic (MZ) twin pair and compared the results to 1,095 communities from the gut and other body habitats of related and unrelated individuals. Using a new scheme for noise reduction in pyrosequencing data, we estimated the total diversity of species-level bacterial phylotypes in the 1.2-1.5 million bacterial 16S rRNA reads obtained from each deeply sampled cotwin to be approximately 800 (35.9%, 49.1% detected in both). A combined 1.1 million read 16S rRNA dataset representing 281 shallowly sequenced fecal samples from 54 twin pairs and their mothers contained an estimated 4,018 species-level phylotypes, with each sample having a unique species assemblage (53.4 +/- 0.6% and 50.3 +/- 0.5% overlap with the deeply sampled cotwins). Of the 134 phylotypes with a relative abundance of >0.1% in the combined dataset, only 37 appeared in >50% of the samples, with one phylotype in the Lachnospiraceae family present in 99%. Nongut communities had significantly reduced overlap with the deeply sequenced twins' fecal microbiota (18.3 +/- 0.3%, 15.3 +/- 0.3%). The MZ cotwins' fecal DNA was deeply sequenced (3.8-6.3 Gbp/sample) and assembled reads were assigned to 25 genus-level phylogenetic bins. Only 17% of the genes in these bins were shared between the cotwins. Bins exhibited differences in their degree of sequence variation, gene content including the repertoire of carbohydrate active enzymes present within and between twins (e.g., predicted cellulases, dockerins), and transcriptional activities. These results provide an expanded perspective about features that make each of us unique life forms and directions for future characterization of our gut ecosystems.


Assuntos
Bactérias/classificação , Bactérias/genética , Trato Gastrointestinal/microbiologia , Variação Genética , Adulto , Algoritmos , Carboidratos/química , Fezes , Feminino , Humanos , Masculino , Modelos Genéticos , Obesidade/complicações , Filogenia , RNA Ribossômico 16S/metabolismo , Transcrição Gênica , Gêmeos Monozigóticos
10.
Nature ; 457(7228): 480-4, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19043404

RESUMO

The human distal gut harbours a vast ensemble of microbes (the microbiota) that provide important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides. Studies of a few unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is used and stored. Here we characterize the faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers, to address how host genotype, environmental exposure and host adiposity influence the gut microbiome. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person's gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable 'core microbiome' at the gene, rather than at the organismal lineage, level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiological states (obese compared with lean).


Assuntos
Trato Gastrointestinal/microbiologia , Metagenoma/fisiologia , Obesidade/microbiologia , Magreza/microbiologia , Adulto , África/etnologia , Biodiversidade , Meio Ambiente , Europa (Continente)/etnologia , Fezes/microbiologia , Feminino , Genótipo , Humanos , Metagenoma/genética , Missouri , Dados de Sequência Molecular , Mães , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Gêmeos Dizigóticos , Gêmeos Monozigóticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA