Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(8)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290498

RESUMO

Grating metamaterials were fabricated with electron beam lithography on CdTe/CdMgTe modulation doped structures with two non-interacting quantum wells. Two types of samples were studied: with etched gratings and with gratings formed by deposition of Au stripes. The polarization properties at THz frequencies of the gratings were determined at room temperature. It was shown that Au gratings formed a linear polarizer, while etched gratings did not polarize THz radiation. Transmission of circularly polarized THz radiation at low temperatures through a sample with no grating showed a strongly circularly polarized cyclotron resonance transition. Transmission of this radiation through a sample with an etched grating showed a magnetoplasmon transition that was almost perfectly linearly polarized. We concluded that magnetoplasmons in metamaterials with etched gratings are linearly polarized excitations, possibly with a small contribution of a circular component. This work opens the possibility of the detailed study of the polarization of magnetoplasmons, which has not been explored in the past.

2.
Sensors (Basel) ; 18(12)2018 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-30544837

RESUMO

An epitaxial layer of HgCdTe-a THz detector-was studied in magnetotransmission, magnetoconductivity and magnetophotoconductivity experiments at cryogenic temperatures. In the optical measurements, monochromatic excitation with photon frequency ranging from 0.05 THz to 2.5 THz was used. We show a resonant response of the detector at magnetic fields as small as 10 mT with the width of the resonant line equal to about 5 mT. Application of a circular polarizer at 2.5 THz measurements allowed for confirming selection rules predicted by the theory of optical transitions in a narrow-gap semiconductor and to estimate the band-gap to be equal to about 4.5 meV. The magnetoconductivity tensor was determined as a function of magnetic field and temperature 2 K < T < 120 K and analysed with a standard one-carrier conductivity model and the mobility spectrum technique. The sample showed n-type conductivity at all temperatures. At temperatures above about 30 K, conductivity was found to be reasonably described by the one-carrier model. At lower temperatures, this description is not accurate. The algorithm of the spectrum of mobility applied to data measured below 30 K showed presence of three types of carriers which were tentatively interpreted as electrons, light holes and heavy holes. The mobility of electrons and light holes is of the order of 10 6 cm 2 /Vs at the lowest temperatures. Magnetophotoconductivity experiments allowed for proposing a detector working at 2 K and 50 mT with a flat response between 0.05 THz and 2.5 THz.

3.
Opt Express ; 22(25): 30547-52, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607001

RESUMO

We report on unidirectional and asymmetric transmission of radially polarized THz radiation through a dual circular metallic grating with sub-wavelength slits. Unidirectional transmission is shown theoretically for a super-Gaussian incident beam, and an asymmetric transmission is demonstrated experimentally, when the radially polarized beam of 0.1 THz is obtained by converting a linearly polarized beam with a discontinuous phase retarder and a tapered waveguide. The dual grating does not include nonlinear materials, its operation is reciprocal, and analogous to that of some planar metallic gratings.

4.
Opt Lett ; 38(6): 839-41, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23503233

RESUMO

We report on experimental evidence of unidirectional transmission of terahertz waves through a pair of metallic gratings with different periods. The gratings are optimized for a broadband transmission in one direction, accompanied with a high extinction rate in the opposite direction. In contrast to previous studies, we show that the zero-order nonreciprocity cannot be achieved. Nonetheless, we confirm that the structure can be used successfully as an asymmetric filter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA