Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Sci Immunol ; 9(97): eadl1965, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968336

RESUMO

Schistosomiasis is an infection caused by contact with Schistosoma-contaminated water and affects more than 230 million people worldwide with varying morbidity. The roles of T helper 2 (TH2) cells and regulatory immune responses in chronic infection are well documented, but less is known about human immune responses during acute infection. Here, we comprehensively map immune responses during controlled human Schistosoma mansoni infection using male or female cercariae. Immune responses to male or female parasite single-sex infection were comparable. An early TH1-biased inflammatory response was observed at week 4 after infection, which was particularly apparent in individuals experiencing symptoms of acute schistosomiasis. By week 8 after infection, inflammatory responses were followed by an expansion of TH2 and regulatory cell subsets. This study demonstrates the shift from TH1 to both TH2 and regulatory responses, typical of chronic schistosomiasis, in the absence of egg production and provides immunological insight into the clinical manifestations of acute schistosomiasis.


Assuntos
Schistosoma mansoni , Esquistossomose mansoni , Células Th2 , Humanos , Feminino , Animais , Masculino , Células Th2/imunologia , Esquistossomose mansoni/imunologia , Schistosoma mansoni/imunologia , Inflamação/imunologia , Adulto , Células Th1/imunologia , Adulto Jovem , Adolescente , Citocinas/imunologia , Esquistossomose/imunologia , Esquistossomose/parasitologia
2.
Eur J Immunol ; : e2451029, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873882

RESUMO

Cellular metabolism is a key determinant of immune cell function. Here we found that CD14+ monocytes from Sub-Saharan Africans produce higher levels of IL-10 following TLR-4 stimulation and are bioenergetically distinct from monocytes from Europeans. Through metabolomic profiling, we identified the higher IL-10 production to be driven by increased baseline production of NADPH oxidase-dependent reactive oxygen species, supported by enhanced pentose phosphate pathway activity. Together, these data indicate that NADPH oxidase-derived ROS is a metabolic checkpoint in monocytes that governs their inflammatory profile and uncovers a metabolic basis for immunological differences across geographically distinct populations.

3.
JCI Insight ; 9(9)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716733

RESUMO

Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Esporozoítos , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Cloroquina/uso terapêutico , Cloroquina/farmacologia , Europa (Continente) , População Europeia , Gabão , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Parasitemia/imunologia , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Vacinação/métodos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , População Centro-Africana
4.
Lancet Infect Dis ; 24(7): 760-774, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513684

RESUMO

BACKGROUND: A human hookworm vaccine is being developed to protect children against iron deficiency and anaemia associated with chronic infection with hookworms. Necator americanus aspartic protease-1 (Na-APR-1) and N americanus glutathione S-transferase-1 (Na-GST-1) are components of the blood digestion pathway critical to hookworm survival in the host. Recombinant Na-GST-1 and catalytically inactive Na-APR-1 (Na-APR-1[M74]) adsorbed to Alhydrogel were safe and immunogenic when delivered separately or co-administered to adults in phase 1 trials in non-endemic and endemic areas. We aimed to investigate the safety and immunogenicity of these antigens in healthy children in a hookworm-endemic area. METHODS: This was a randomised, controlled, observer-blind, phase 1, dose-escalation trial, conducted in a clinical research centre, in 60 children aged six to ten years in Lambaréné, a hookworm-endemic region of Gabon. Healthy children (determined by clinical examination and safety laboratory testing) were randomised 4:1 to receive co-administered Na-GST-1 on Alhydrogel plus Na-APR-1(M74) on Alhydrogel and glucopyranosyl lipid A in aqueous formulation (GLA-AF), or co-administered ENGERIX-B hepatitis B vaccine (HBV) and saline placebo, injected into the deltoid of each arm. Allocation to vaccine groups was observer-masked. In each vaccine group, children were randomised 1:1 to receive intramuscular injections into each deltoid on two vaccine schedules, one at months 0, 2, and 4 or at months 0, 2, and 6. 10 µg, 30 µg, and 100 µg of each antigen were administered in the first, second, and third cohorts, respectively. The intention-to-treat population was used for safety analyses; while for immunogenicity analyses, the per-protocol population was used (children who received all scheduled vaccinations). The primary outcome was to evaluate the vaccines' safety and reactogenicity in healthy children aged between six and ten years. The secondary outcome was to measure antigen-specific serum IgG antibody levels at pre-vaccination and post-vaccination timepoints by qualified ELISAs. The trial is registered with ClinicalTrials.gov, NCT02839161, and is completed. FINDINGS: Between Jan 23 and Oct 3, 2017, 137 children were screened, of whom 76 were eligible for this trial. 60 children were recruited, and allocated to either 10 µg of the co-administered antigens (n=8 for each injection schedule), 30 µg (n=8 for each schedule), 100 µg (n=8 for each schedule), or HBV and placebo (n=6 for each schedule) in three sequential cohorts. Co-administration of the vaccines was well tolerated; the most frequent solicited adverse events were mild-to-moderate injection-site pain, observed in up to 12 (75%) of 16 participants per vaccine group, and mild headache (12 [25%] of 48) and fever (11 [23%] of 48). No vaccine-related serious adverse events were observed. Significant anti-Na-APR-1(M74) and anti-Na-GST-1 IgG levels were induced in a dose-dependent manner, with peaks seen 14 days after the third vaccinations, regardless of dose (for Na-APR-1[M74], geometric mean levels [GML]=2295·97 arbitrary units [AU] and 726·89 AU, while for Na-GST-1, GMLs=331·2 AU and 21·4 AU for the month 0, 2, and 6 and month 0, 2, and 4 schedules, respectively). The month 0, 2, and 6 schedule induced significantly higher IgG responses to both antigens (p=0·01 and p=0·04 for Na-APR-1[M74] and Na-GST-1, respectively). INTERPRETATION: Co-administration of recombinant Na-APR-1(M74) and Na-GST-1 to school-aged Gabonese children was well tolerated and induced significant IgG responses. These results justify further evaluation of this antigen combination in proof-of-concept controlled-infection and efficacy studies in hookworm-endemic areas. FUNDING: European Union Seventh Framework Programme.


Assuntos
Necator americanus , Humanos , Masculino , Criança , Feminino , Gabão , Necator americanus/imunologia , Animais , Infecções por Uncinaria/prevenção & controle , Infecções por Uncinaria/imunologia , Antígenos de Helmintos/imunologia , Anticorpos Anti-Helmínticos/sangue , Glutationa Transferase/imunologia , Glutationa Transferase/genética , Método Simples-Cego , Vacinas/imunologia , Vacinas/administração & dosagem , Imunogenicidade da Vacina
5.
Nat Rev Immunol ; 24(4): 250-263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37770632

RESUMO

Vaccination is one of medicine's greatest achievements; however, its full potential is hampered by considerable variation in efficacy across populations and geographical regions. For example, attenuated malaria vaccines in high-income countries confer almost 100% protection, whereas in low-income regions these same vaccines achieve only 20-50% protection. This trend is also observed for other vaccines, such as bacillus Calmette-Guérin (BCG), rotavirus and yellow fever vaccines, in terms of either immunogenicity or efficacy. Multiple environmental factors affect vaccine responses, including pathogen exposure, microbiota composition and dietary nutrients. However, there has been variable success with interventions that target these individual factors, highlighting the need for a better understanding of their downstream immunological mechanisms to develop new ways of modulating vaccine responses. Here, we review the immunological factors that underlie geographical variation in vaccine responses. Through the identification of causal pathways that link environmental influences to vaccine responsiveness, it might become possible to devise modulatory compounds that can complement vaccines for better outcomes in regions where they are needed most.


Assuntos
Vacina BCG , Vacinação , Humanos , Fatores Imunológicos , Vacinas Atenuadas
6.
Lancet Microbe ; 4(12): e1024-e1034, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38042152

RESUMO

BACKGROUND: Vaccine development against hookworm is hampered by the absence of the development of protective immunity in populations repeatedly exposed to hookworm, limiting identification of mechanisms of protective immunity and new vaccine targets. Immunisation with attenuated larvae has proven effective in dogs and partial immunity has been achieved using an irradiated larvae model in healthy volunteers. We aimed to investigate the protective efficacy of immunisation with short-term larval infection against hookworm challenge. METHODS: We did a single-centre, placebo-controlled, randomised, controlled, phase 1 trial at Leiden University Medical Center (Leiden, Netherlands). Healthy volunteers (aged 18-45 years) were recruited using advertisements on social media and in publicly accessible areas. Volunteers were randomly assigned (2:1) to receive three short-term infections with 50 infectious Necator americanus third-stage filariform larvae (50L3) or placebo. Infection was abrogated with a 3-day course of albendazole 400 mg, 2 weeks after each exposure. Subsequently all volunteers were challenged with two doses of 50L3 at a 2-week interval. The primary endpoint was egg load (geometric mean per g faeces) measured weekly between weeks 12 and 16 after first challenge, assessed in the per-protocol population, which included all randomly assigned volunteers with available data on egg counts at week 12-16 after challenge. This study is registered with ClinicalTrials.gov, NCT03702530. FINDINGS: Between Nov 8 and Dec 14, 2018, 26 volunteers were screened, of whom 23 enrolled in the trial. The first immunisation was conducted on Dec 18, 2018. 23 volunteers were randomly assigned (15 to the intervention group and eight to the placebo group). Egg load after challenge was lower in the intervention group than the placebo group (geometric mean 571 eggs per g [range 372-992] vs 873 eggs per g [268-1484]); however, this difference was not statistically significant (p=0·10). Five volunteers in the intervention group developed a severe skin rash, which was associated with 40% reduction in egg counts after challenge (geometric mean 742 eggs per g [range 268-1484] vs 441 eggs per g [range 380-520] after challenge; p=0·0025) and associated with higher peak IgG1 titres. INTERPRETATION: To our knowledge, this is the first study to describe a protective effect of short-term exposure to hookworm larvae and show an association with skin response, eosinophilic response, and IgG1. These findings could inform future hookworm vaccine development. FUNDING: Dioraphte Foundation.


Assuntos
Infecções por Uncinaria , Necator americanus , Humanos , Animais , Cães , Voluntários Saudáveis , Países Baixos , Infecções por Uncinaria/tratamento farmacológico , Infecções por Uncinaria/prevenção & controle , Imunoglobulina G , Larva
7.
EBioMedicine ; 97: 104832, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837930

RESUMO

BACKGROUND: A controlled human infection model for schistosomiasis (CHI-S) can speed up vaccine development and provides insight into early immune responses following schistosome exposure. Recently, we established CHI-S model using single-sex male-only Schistosoma mansoni (Sm) cercariae in Schistosoma-naïve individuals. Given important differences in antigenic profile and human immune responses to schistosomes of different sex, we pioneered a single-sex female-only CHI-S model for future use in vaccine development. METHODS: We exposed 13 healthy, Schistosoma-naïve adult participants to 10 (n = 3) or 20 (n = 10) female cercariae and followed for 20 weeks, receiving treatment with praziquantel (PZQ) 60 mg/kg at week 8 and 12 after exposure. FINDINGS: The majority (11/13) participants reported rash and/or itch at the site of exposure, 5/13 had transient symptoms of acute schistosomiasis. Exposure to 20 cercariae led to detectable infection, defined as serum circulating anodic antigen levels >1.0 pg/mL, in 6/10 participants. Despite two rounds of PZQ treatment, 4/13 participants showed signs of persistent infection. Additional one- or three-day PZQ treatment (1 × 60 mg/kg and 3 × 60 mg/kg) or artemether did not result in cure, but over time three participants self-cured. Antibody, cellular, and cytokine responses peaked at week 4 post infection, with a mixed Th1, Th2, and regulatory profile. Cellular responses were (most) discriminative for symptoms. INTERPRETATION: Female-only infections exhibit similar clinical and immunological profiles as male-only infections but are more resistant to PZQ treatment. This limits future use of this model and may have important implications for disease control programs. FUNDING: European Union's Horizon 2020 (grant no. 81564).


Assuntos
Anti-Helmínticos , Esquistossomose mansoni , Adulto , Animais , Humanos , Masculino , Feminino , Esquistossomose mansoni/tratamento farmacológico , Voluntários Saudáveis , Schistosoma mansoni , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Citocinas , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
8.
Immunother Adv ; 3(1): ltad010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538934

RESUMO

Control of schistosomiasis depends on a single drug, praziquantel, with variable cure rates, high reinfection rates, and risk of drug resistance. A vaccine could transform schistosomiasis control. Preclinical data show that vaccine development is possible, but conventional vaccine efficacy trials require high incidence, long-term follow-up, and large sample size. Controlled human infection studies (CHI) can provide early efficacy data, allowing the selection of optimal candidates for further trials. A Schistosoma CHI has been established in the Netherlands but responses to infection and vaccines differ in target populations in endemic countries. We aim to develop a CHI for Schistosoma mansoni in Uganda to test candidate vaccines in an endemic setting. This is an open-label, dose-escalation trial in two populations: minimal, or intense, prior Schistosoma exposure. In each population, participants will be enrolled in sequential dose-escalating groups. Initially, three volunteers will be exposed to 10 cercariae. If all show infection, seven more will be exposed to the same dose. If not, three volunteers in subsequent groups will be exposed to higher doses (20 or 30 cercariae) following the same algorithm, until all 10 volunteers receiving a particular dose become infected, at which point the study will be stopped for that population. Volunteers will be followed weekly after infection until CAA positivity or to 12 weeks. Once positive, they will be treated with praziquantel and followed for one year. The trial registry number is ISRCTN14033813 and all approvals have been obtained. The trial will be subjected to monitoring, inspection, and/or audits.

10.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37428185

RESUMO

Innate mononuclear phagocytic system (MPS) cells preserve mucosal immune homeostasis. We investigated their role at nasal mucosa following allergen challenge with house dust mite. We combined single-cell proteome and transcriptome profiling on nasal immune cells from nasal biopsies cells from 30 allergic rhinitis and 27 non-allergic subjects before and after repeated nasal allergen challenge. Biopsies of patients showed infiltrating inflammatory HLA-DRhi/CD14+ and CD16+ monocytes and proallergic transcriptional changes in resident CD1C+/CD1A+ conventional dendritic cells (cDC)2 following challenge. In contrast, non-allergic individuals displayed distinct innate MPS responses to allergen challenge: predominant infiltration of myeloid-derived suppressor cells (MDSC: HLA-DRlow/CD14+ monocytes) and cDC2 expressing inhibitory/tolerogenic transcripts. These divergent patterns were confirmed in ex vivo stimulated MPS nasal biopsy cells. Thus, we identified not only MPS cell clusters involved in airway allergic inflammation but also highlight novel roles for non-inflammatory innate MPS responses by MDSC to allergens in non-allergic individuals. Future therapies should address MDSC activity as treatment for inflammatory airway diseases.


Assuntos
Alérgenos , Rinite Alérgica Perene , Humanos , Rinite Alérgica Perene/patologia , Mucosa Nasal , Células Mieloides/patologia , Inflamação/patologia
11.
PLoS Negl Trop Dis ; 17(6): e0011344, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37363916

RESUMO

During chronic schistosome infections, a complex regulatory network is induced to regulate the host immune system, in which IL-10-producing regulatory B (Breg) cells play a significant role. Schistosoma mansoni soluble egg antigens (SEA) are bound and internalized by B cells and induce both human and mouse IL-10 producing Breg cells. To identify Breg-inducing proteins in SEA, we fractionated SEA by size exclusion chromatography and found 6 fractions able to induce IL-10 production by B cells (out of 18) in the high, medium and low molecular weight (MW) range. The high MW fractions were rich in heavily glycosylated molecules, including multi-fucosylated proteins. Using SEA glycoproteins purified by affinity chromatography and synthetic glycans coupled to gold nanoparticles, we investigated the role of these glycan structures in inducing IL-10 production by B cells. Then, we performed proteomics analysis on active low MW fractions and identified a number of proteins with putative immunomodulatory properties, notably thioredoxin (SmTrx1) and the fatty acid binding protein Sm14. Subsequent splenic murine B cell stimulations and hock immunizations with recombinant SmTrx1 and Sm14 showed their ability to dose-dependently induce IL-10 production by B cells both in vitro and in vivo. Identification of unique Breg cells-inducing molecules may pave the way to innovative therapeutic strategies for inflammatory and auto-immune diseases.


Assuntos
Linfócitos B Reguladores , Nanopartículas Metálicas , Esquistossomose mansoni , Humanos , Animais , Camundongos , Schistosoma mansoni , Esquistossomose mansoni/prevenção & controle , Interleucina-10/genética , Ouro , Fatores Imunológicos , Tiorredoxinas/genética , Antígenos de Helmintos
12.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37140993

RESUMO

Obesity-associated metabolic inflammation drives the development of insulin resistance and type 2 diabetes, notably through modulating innate and adaptive immune cells in metabolic organs. The nutrient sensor liver kinase B1 (LKB1) has recently been shown to control cellular metabolism and T cell priming functions of DCs. Here, we report that hepatic DCs from high-fat diet-fed (HFD-fed) obese mice display increased LKB1 phosphorylation and that LKB1 deficiency in DCs (CD11cΔLKB1) worsened HFD-driven hepatic steatosis and impaired glucose homeostasis. Loss of LKB1 in DCs was associated with increased expression of Th17-polarizing cytokines and accumulation of hepatic IL-17A+ Th cells in HFD-fed mice. Importantly, IL-17A neutralization rescued metabolic perturbations in HFD-fed CD11cΔLKB1 mice. Mechanistically, deficiency of the canonical LKB1 target AMPK in HFD-fed CD11cΔAMPKα1 mice recapitulated neither the hepatic Th17 phenotype nor the disrupted metabolic homeostasis, suggesting the involvement of other and/or additional LKB1 downstream effectors. We indeed provide evidence that the control of Th17 responses by DCs via LKB1 is actually dependent on both AMPKα1 salt-inducible kinase signaling. Altogether, our data reveal a key role for LKB1 signaling in DCs in protection against obesity-induced metabolic dysfunctions by limiting hepatic Th17 responses.


Assuntos
Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Interleucina-17/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Obesidade/metabolismo , Fígado/metabolismo , Homeostase , Células Dendríticas/metabolismo
13.
Metabolites ; 12(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36557262

RESUMO

The interaction of malaria parasites with their human host is extensively studied, yet only few studies reported how P. falciparum infection affects urinary metabolite profiles and how this is associated with immunity. We present a longitudinal study of the urinary metabolic profiles of twenty healthy Africans with lifelong exposure to malaria and five malaria-naïve Europeans, who were all challenged with direct venous inoculation of live P. falciparum sporozoïtes (PfSPZ) and followed up until they developed symptoms or became thick blood smear positive (TBS). Urine samples were collected before and at 2, 5, 9 and 11 days post challenge and were analysed. Upon infection, all Europeans became TBS positive, while Africans showed either a delay in time to parasitaemia or controlled infection. Our metabolic data showed that Europeans and Africans had distinct alterations in metabolite patterns, with changes mostly seen on days 5 and 9 post PfSPZ infection, and more prominently in Europeans. Within the African group, the levels of formate, urea, trimethylamine, threonine, choline, myo-inositol and acetate were significantly higher in TBS positive whereas the levels of pyruvate, 3-methylhistidine and dimethylglycine were significantly lower in individuals who remained TBS negative. Notably, before inoculation with PfSPZ, a group of metabolites including phenylacetylglutamine can potentially be used to predict parasitaemia control among Africans. Taken together, this study highlights the difference in urinary metabolic changes in response to malaria infection as a consequence of lifelong exposure to malaria and that change detectable before challenge might predict the control of parasitaemia in malaria-endemic areas.

14.
PLoS One ; 17(9): e0275013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155987

RESUMO

Metabolomics provides a powerful tool to study physiological changes in response to various perturbations such as vaccination. We explored whether metabolomic changes could be seen after vaccination in a phase I trial where Gabonese adults living either in rural or semi-urban areas received the subunit hookworm vaccine candidates (Na-GST-1 and Na-APR-1 (M74) adjuvanted with Alhydrogel plus GLA-AF (n = 24) or the hepatitis B vaccine (n = 8) as control. Urine samples were collected and assayed using targeted 1H NMR spectroscopy. At baseline, a set of metabolites significantly distinguished rural from semi-urban individuals. The pre- and post-vaccination comparisons indicated significant changes in few metabolites but only one day after the first vaccination. There was no relationship with immunogenicity. In conclusion, in a small phase 1 trial, urinary metabolomics could distinguish volunteers with different environmental exposures and reflected the safety of the vaccines but did not show a relationship to immunogenicity.


Assuntos
Ancylostomatoidea , Infecções por Uncinaria , Adjuvantes Imunológicos , Adulto , Hidróxido de Alumínio , Animais , Gabão , Vacinas contra Hepatite B , Humanos , Imunogenicidade da Vacina
15.
Nutrients ; 14(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36014832

RESUMO

The substantial increase in the prevalence of non-communicable diseases in Indonesia might be driven by rapid socio-economic development through urbanization. Here, we carried out a longitudinal 1-year follow-up study to evaluate the effect of urbanization, an important determinant of health, on metabolic profiles of young Indonesian adults. University freshmen/women in Jakarta, aged 16−25 years, who either had recently migrated from rural areas or originated from urban settings were studied. Anthropometry, dietary intake, and physical activity, as well as fasting blood glucose and insulin, leptin, and adiponectin were measured at baseline and repeated at one year follow-up. At baseline, 106 urban and 83 rural subjects were recruited, of which 81 urban and 66 rural were followed up. At baseline, rural subjects had better adiposity profiles, whole-body insulin resistance, and adipokine levels compared to their urban counterparts. After 1-year, rural subjects experienced an almost twice higher increase in BMI than urban subjects (estimate (95%CI): 1.23 (0.94; 1.52) and 0.69 (0.43; 0.95) for rural and urban subjects, respectively, Pint < 0.01). Fat intake served as the major dietary component, which partially mediates the differences in BMI between urban and rural group at baseline. It also contributed to the changes in BMI over time for both groups, although it does not explain the enhanced gain of BMI in rural subjects. A significantly higher increase of leptin/adiponectin ratio was also seen in rural subjects after 1-year of living in an urban area. In conclusion, urbanization was associated with less favorable changes in adiposity and adipokine profiles in a population of young Indonesian adults.


Assuntos
Adipocinas , Adiponectina , Adiposidade , Leptina , Urbanização , Adipocinas/metabolismo , Adiponectina/metabolismo , Adiposidade/fisiologia , Adolescente , Adulto , Feminino , Seguimentos , Humanos , Indonésia/epidemiologia , Leptina/metabolismo , Metaboloma/fisiologia , Obesidade/metabolismo , Estudos Prospectivos , População Rural , População Urbana , Adulto Jovem
16.
Sci Rep ; 12(1): 13303, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922467

RESUMO

Controlled human malaria infection (CHMI) using cryopreserved non-attenuated Plasmodium falciparum sporozoites (PfSPZ) offers a unique opportunity to investigate naturally acquired immunity (NAI). By analyzing blood samples from 5 malaria-naïve European and 20 African adults with lifelong exposure to malaria, before, 5, and 11 days after direct venous inoculation (DVI) with SanariaR PfSPZ Challenge, we assessed the immunological patterns associated with control of microscopic and submicroscopic parasitemia. All (5/5) European individuals developed parasitemia as defined by thick blood smear (TBS), but 40% (8/20) of the African individuals controlled their parasitemia, and therefore remained thick blood smear-negative (TBS- Africans). In the TBS- Africans, we observed higher baseline frequencies of CD4+ T cells producing interferon-gamma (IFNγ) that significantly decreased 5 days after PfSPZ DVI. The TBS- Africans, which represent individuals with either very strong and rapid blood-stage immunity or with immunity to liver stages, were stratified into subjects with sub-microscopic parasitemia (TBS-PCR+) or those with possibly sterilizing immunity (TBS-PCR-). Higher frequencies of IFNγ+TNF+CD8+ γδ T cells at baseline, which later decreased within five days after PfSPZ DVI, were associated with those who remained TBS-PCR-. These findings suggest that naturally acquired immunity is characterized by different cell types that show varying strengths of malaria parasite control. While the high frequencies of antigen responsive IFNγ+CD4+ T cells in peripheral blood keep the blood-stage parasites to a sub-microscopic level, it is the IFNγ+TNF+CD8+ γδ T cells that are associated with either immunity to the liver-stage, or rapid elimination of blood-stage parasites.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Animais , Gabão , Humanos , Interferon gama , Malária Falciparum/parasitologia , Parasitemia/parasitologia , Plasmodium falciparum , Esporozoítos , Voluntários
19.
Pediatr Infect Dis J ; 41(6): 496-506, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363645

RESUMO

BACKGROUND: Increased nasopharyngeal carriage of pathogenic bacteria is found in low socioeconomic status (SES) settings. How SES affects local immune responses, important for controlling colonization, is currently unknown. OBJECTIVE: Examining bacterial colonization and cytokine response in the nasal mucosa of children from high and low SES. METHODS: Nasosorption samples were collected in October 2019 from 48 high SES and 50 low SES schoolchildren, in a cross-sectional study in Makassar, Indonesia. Twenty-five cytokines were measured in nasal fluid. Quantitative polymerase chain reaction was performed to determine carriage and density of Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis and Staphylococcus aureus. Data were analyzed using multivariate regression. RESULTS: H. influenzae and S. pneumoniae densities were increased in low SES settings compared to the high SES settings (P = 0.006, P = 0.026), with 6 and 67 times higher median densities, respectively. Densities of H. influenzae and S. pneumoniae were positively associated with levels of IL-1beta and IL-6. After correcting for bacterial density, IL-6 levels were higher in colonized children from high SES than low SES for H. influenzae and S. pneumoniae (both P = 0.039). CONCLUSION: Increased densities of H. influenzae and S. pneumoniae were observed in low SES children, whereas IL-6 levels associated with colonization were reduced in these children, indicating that immune responses to bacterial colonization were altered by SES.


Assuntos
Portador Sadio , Interleucina-6 , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Criança , Estudos Transversais , Haemophilus influenzae , Humanos , Indonésia/epidemiologia , Lactente , Mucosa Nasal , Nasofaringe/microbiologia , Streptococcus pneumoniae
20.
Sci Rep ; 12(1): 3394, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233023

RESUMO

Intestinal helminths are highly prevalent in low-SES children and could contribute to poor health outcomes either directly or via alteration of the gut microbiome and gut barrier function. We analysed parasitic infections and gut microbiota composition in 325 children attending high- and low-SES schools in Makassar, Indonesia before and after albendazole treatment. Lactulose/Mannitol Ratio (LMR, a marker of gut permeability); I-FABP (a surrogate marker of intestinal damage) as well as inflammatory markers (LBP) were measured. Helminth infections were highly prevalent (65.6%) in low-SES children. LMR and I-FABP levels were higher in low-SES children (geomean (95%CI): 4.03 (3.67-4.42) vs. 3.22 (2.91-3.57); p. adj < 0.001; and 1.57 (1.42-1.74) vs. 1.25 (1.13-1.38); p. adj = 0.02, respectively) while LBP levels were lower compared to the high-SES (19.39 (17.09-22.01) vs. 22.74 (20.07-26.12); p.adj = 0.01). Albendazole reduced helminth infections in low-SES and also decreased LMR with 11% reduction but only in helminth-uninfected children (estimated treatment effect: 0.89; p.adj = 0.01). Following treatment, I-FABP decreased in high- (0.91, p.adj < 0.001) but increased (1.12, p.adj = 0.004) in low-SES children. Albendazole did not alter the levels of LBP. Microbiota analysis showed no contribution from specific bacterial-taxa to the changes observed. Intestinal permeability and epithelial damage are higher while peripheral blood inflammatory marker is lower in children of low-SES in Indonesia. Furthermore, treatment decreased LMR in helminth-uninfected only.


Assuntos
Helmintíase , Helmintos , Albendazol/uso terapêutico , Animais , Criança , Helmintíase/tratamento farmacológico , Helmintíase/epidemiologia , Helmintíase/parasitologia , Humanos , Indonésia/epidemiologia , Permeabilidade , Classe Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA