Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39275649

RESUMO

This paper presents a recent investigation into the electromechanical behavior of thermally reduced graphene oxide (rGO) as a strain sensor undergoing repeated large mechanical strains up to 20.72%, with electrical signal output measurement in multiple directions relative to the applied strain. Strain is one the most basic and most common stimuli sensed. rGO can be synthesized from abundant materials, can survive exposure to large strains (up to 20.72%), can be synthesized directly on structures with relative ease, and provides high sensitivity, with gauge factors up to 200 regularly reported. In this investigation, a suspension of graphene oxide flakes was deposited onto Polydimethylsiloxane (PDMS) substrates and thermally reduced to create macroscopic rGO-strain sensors. Electrical resistance parallel to the direction of applied tension (x^) demonstrated linear behavior (similar to the piezoresistive behavior of solid materials under strain) up to strains around 7.5%, beyond which nonlinear resistive behavior (similar to percolative electrical behavior) was observed. Cyclic tensile testing results suggested that some residual micro-cracks remained in place after relaxation from the first cycle of tensile loading. A linear fit across the range of strains investigated produced a gauge factor of 91.50(Ω/Ω)/(m/m), though it was observed that the behavior at high strains was clearly nonlinear. Hysteresis testing showed high consistency in the electromechanical response of the sensor between loading and unloading within cycles as well as increased consistency in the pattern of the response between different cycles starting from cycle 2.

2.
Sci Rep ; 9(1): 19805, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874957

RESUMO

The adhesion strength of thin films is critical to the durability of micro and nanofabricated devices. However, current testing methods are imprecise and do not produce quantitative results necessary for design specifications. The most common testing methods involve the manual application and removal of unspecified tape. This overcome many of the challenges of connecting to thin films to test their adhesion properties but different tapes, variation in manual application, and poorly controlled removal of tape can result in wide variation in resultant forces. Furthermore, the most common tests result in a qualitative ranking of film survival, not a measurement with scientific units. This paper presents a study into application and peeling parameters that can cause variation in the peeling force generated by tapes. The results of this study were then used to design a test methodology that would control the key parameters and produced repeatable quantitative measurements. Testing using the resulting method showed significant improvement over more standard methods, producing measured results with reduced variation. The new method was tested on peeling a layer of paint from a PTFE backing and was found to be sensitive enough to register variation in force due to differing peeling mechanisms within a single test.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA