Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(29): 19208-19219, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38982590

RESUMO

Photoluminescence intermittency remains one of the biggest challenges in realizing perovskite quantum dots (QDs) as scalable single photon emitters. We compare CsPbBr3 QDs capped with different ligands, lecithin, and a combination of oleic acid and oleylamine, to elucidate the role of surface chemistry on photoluminescence intermittency. We employ widefield photoluminescence microscopy to sample the blinking behavior of hundreds of QDs. Using change point analysis, we achieve the robust classification of blinking trajectories, and we analyze representative distributions from large numbers of QDs (Nlecithin = 1308, Noleic acid/oleylamine = 1317). We find that lecithin suppresses blinking in CsPbBr3 QDs compared with oleic acid/oleylamine. Under common experimental conditions, lecithin-capped QDs are 7.5 times more likely to be nonblinking and spend 2.5 times longer in their most emissive state, despite both QDs having nearly identical solution photoluminescence quantum yields. We measure photoluminescence as a function of dilution and show that the differences between lecithin and oleic acid/oleylamine capping emerge at low concentrations during preparation for single particle experiments. From experiment and first-principles calculations, we attribute the differences in lecithin and oleic acid/oleylamine performance to differences in their ligand binding equilibria. Consistent with our experimental data, density functional theory calculations suggest a stronger binding affinity of lecithin to the QD surface compared to oleic acid/oleylamine, implying a reduced likelihood of ligand desorption during dilution. These results suggest that using more tightly binding ligands is a necessity for surface passivation and, consequently, blinking reduction in perovskite QDs used for single particle and quantum light experiments.

2.
ACS Nano ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058675

RESUMO

Single-photon sources are essential for advancing quantum technologies with scalable integration being a crucial requirement. To date, deterministic positioning of single-photon sources in large-scale photonic structures remains a challenge. In this context, colloidal quantum dots (QDs), particularly core/shell configurations, are attractive due to their solution processability. However, traditional QDs are typically small, about 3 to 6 nm, which restricts their deterministic placement and utility in large-scale photonic devices, particularly within optical cavities. The largest existing core/shell QDs are a family of giant CdSe/CdS QDs, with total diameters ranging from about 20 to 50 nm. Pushing beyond this size limit, we introduce a synthesis strategy for colossal CdSe/CdS QDs, with sizes ranging from 30 to 100 nm, using a stepwise high-temperature continuous injection method. Electron microscopy reveals a consistent hexagonal diamond morphology composed of 12 semipolar {101̅1} facets and one polar (0001) facet. We also identify conditions where shell growth is disrupted, leading to defects, islands, and mechanical instability, which suggest synthetic requirements for growing crystalline particles beyond 100 nm. The stepwise growth of thick CdS shells on CdSe cores enables the synthesis of emissive QDs with long photoluminescence lifetimes of a few microseconds and suppressed blinking at room temperature. Notably, QDs with 80 and 100 CdS monolayers exhibit high single-photon emission purity with second-order photon correlation g(2)(0) values below 0.2.

3.
Nano Lett ; 24(23): 6897-6905, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805366

RESUMO

Aluminum nanocrystals created by catalyst-driven colloidal synthesis support excellent plasmonic properties, due to their high level of elemental purity, monocrystallinity, and controlled size and shape. Reduction in the rate of nanocrystal growth enables the synthesis of highly anisotropic Al nanowires, nanobars, and singly twinned "nanomoustaches". Electron energy loss spectroscopy was used to study the plasmonic properties of these nanocrystals, spanning the broad energy range needed to map their plasmonic modes. The coupling between these nanocrystals and other plasmonic metal nanostructures, specifically Ag nanocubes and Au films of controlled nanoscale thickness, was investigated. Al nanocrystals show excellent long-term stability under atmospheric conditions, providing a practical alternative to coinage metal-based nanowires in assembled nanoscale devices.

4.
Phys Rev Lett ; 131(8): 085101, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683150

RESUMO

Warm dense matter (WDM) represents a highly excited state that lies at the intersection of solids, plasmas, and liquids and that cannot be described by equilibrium theories. The transient nature of this state when created in a laboratory, as well as the difficulties in probing the strongly coupled interactions between the electrons and the ions, make it challenging to develop a complete understanding of matter in this regime. In this work, by exciting isolated ∼8 nm copper nanoparticles with a femtosecond laser below the ablation threshold, we create uniformly excited WDM. Using photoelectron spectroscopy, we measure the instantaneous electron temperature and extract the electron-ion coupling of the nanoparticle as it undergoes a solid-to-WDM phase transition. By comparing with state-of-the-art theories, we confirm that the superheated nanoparticles lie at the boundary between hot solids and plasmas, with associated strong electron-ion coupling. This is evidenced both by a fast energy loss of electrons to ions, and a strong modulation of the electron temperature induced by strong acoustic breathing modes that change the nanoparticle volume. This work demonstrates a new route for experimental exploration of the exotic properties of WDM.

5.
Nat Nanotechnol ; 18(3): 227-232, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36690739

RESUMO

Topological magnetic monopoles (TMMs), also known as hedgehogs or Bloch points, are three-dimensional (3D) non-local spin textures that are robust to thermal and quantum fluctuations due to the topology protection1-4. Although TMMs have been observed in skyrmion lattices1,5, spinor Bose-Einstein condensates6,7, chiral magnets8, vortex rings2,9 and vortex cores10, it has been difficult to directly measure the 3D magnetization vector field of TMMs and probe their interactions at the nanoscale. Here we report the creation of 138 stable TMMs at the specific sites of a ferromagnetic meta-lattice at room temperature. We further develop soft X-ray vector ptycho-tomography to determine the magnetization vector and emergent magnetic field of the TMMs with a 3D spatial resolution of 10 nm. This spatial resolution is comparable to the magnetic exchange length of transition metals11, enabling us to probe monopole-monopole interactions. We find that the TMM and anti-TMM pairs are separated by 18.3 ± 1.6 nm, while the TMM and TMM, and anti-TMM and anti-TMM pairs are stabilized at comparatively longer distances of 36.1 ± 2.4 nm and 43.1 ± 2.0 nm, respectively. We also observe virtual TMMs created by magnetic voids in the meta-lattice. This work demonstrates that ferromagnetic meta-lattices could be used as a platform to create and investigate the interactions and dynamics of TMMs. Furthermore, we expect that soft X-ray vector ptycho-tomography can be broadly applied to quantitatively image 3D vector fields in magnetic and anisotropic materials at the nanoscale.

6.
ACS Appl Mater Interfaces ; 14(36): 41316-41327, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36054507

RESUMO

Semiconductor metalattices consisting of a linked network of three-dimensional nanostructures with periodicities on a length scale <100 nm can enable tailored functional properties due to their complex nanostructuring. For example, by controlling both the porosity and pore size, thermal transport in these phononic metalattices can be tuned, making them promising candidates for efficient thermoelectrics or thermal rectifiers. Thus, the ability to characterize the porosity, and other physical properties, of metalattices is critical but challenging, due to their nanoscale structure and thickness. To date, only metalattices with high porosities, close to the close-packing fraction of hard spheres, have been studied experimentally. Here, we characterize the porosity, thickness, and elastic properties of a low-porosity, empty-pore silicon metalattice film (∼500 nm thickness) with periodic spherical pores (∼tens of nanometers), for the first time. We use laser-driven nanoscale surface acoustic waves probed by extreme ultraviolet scatterometry to nondestructively measure the acoustic dispersion in these thin silicon metalattice layers. By comparing the data to finite element models of the metalattice sample, we can extract Young's modulus and porosity. Moreover, by controlling the acoustic wave penetration depth, we can also determine the metalattice layer thickness and verify the substrate properties. Additionally, we utilize electron tomography images of the metalattice to verify the geometry and validate the porosity extracted from scatterometry. These advanced characterization techniques are critical for informed and iterative fabrication of energy-efficient devices based on nanostructured metamaterials.

7.
J Am Chem Soc ; 144(23): 10615-10621, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35653721

RESUMO

The development of 2D electrically conductive metal-organic frameworks (EC-MOFs) has significantly expanded the scope of MOFs' applications into energy storage, electrocatalysis, and sensors. Despite growing interest in EC-MOFs, they often show low surface area and lack functionality due to the limited ligand motifs available. Herein we present a new EC-MOF using 2,3,8,9,14,15-hexahydroxyltribenzocyclyne (HHTC) linker and Cu nodes, featuring a large surface area. The MOF exhibits an electrical conductivity up to 3.02 × 10-3 S/cm and a surface area up to 1196 m2/g, unprecedentedly high for 2D EC-MOFs. We also demonstrate the utilization of alkyne functionality in the framework by postsynthetically hosting heterometal ions (e.g., Ni2+, Co2+). Additionally, we investigated particle size tunability, facilitating the study of size-property relationships. We believe that these results not only contribute to expanding the library of EC-MOFs but shed light on the new opportunities to explore electronic applications.


Assuntos
Estruturas Metalorgânicas , Alcinos , Condutividade Elétrica , Eletrônica
8.
Nano Lett ; 21(21): 9131-9137, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34676756

RESUMO

Exploiting the high surface-area-to-volume ratio of nanomaterials to store energy in the form of electrochemical alloys is an exceptionally promising route for achieving high-rate energy storage and delivery. Nanoscale palladium hydride is an excellent model system for understanding how nanoscale-specific properties affect the absorption and desorption of energy carrying equivalents. Hydrogen absorption and desorption in shape-controlled Pd nanostructures does not occur uniformly across the entire nanoparticle surface. Instead, hydrogen absorption and desorption proceed selectively through high-activity sites at the corners and edges. Such a mechanism hinders the hydrogen absorption rates and greatly reduces the benefit of nanoscaling the dimensions of the palladium. To solve this, we modify the surface of palladium with an ultrathin platinum shell. This modification nearly removes the barrier for hydrogen absorption (89 kJ/mol without a Pt shell and 1.8 kJ/mol with a Pt shell) and enables diffusion through the entire Pd/Pt surface.

9.
J Am Chem Soc ; 143(30): 11361-11369, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34286970

RESUMO

Heterogeneous photocatalysis is less common but can provide unique avenues for inducing novel chemical transformations and can also be utilized for energy transductions, i.e., the energy in the photons can be captured in chemical bonds. Here, we developed a novel heterogeneous photocatalytic system that employs a lead-halide perovskite nanocrystal (NC) to capture photons and direct photogenerated holes to a surface bound transition metal Cu-site, resulting in a N-N heterocyclization reaction. The reaction starts from surface coordinated diamine substrates and requires two subsequent photo-oxidation events per reaction cycle. We establish a photocatalytic pathway that incorporates sequential inner sphere electron transfer events, photons absorbed by the NC generate holes that are sequentially funneled to the Cu-surface site to perform the reaction. The photocatalyst is readily prepared via a controlled cation-exchange reaction and provides new opportunities in photodriven heterogeneous catalysis.

10.
Sci Adv ; 7(5)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33571123

RESUMO

Next-generation nano- and quantum devices have increasingly complex 3D structure. As the dimensions of these devices shrink to the nanoscale, their performance is often governed by interface quality or precise chemical or dopant composition. Here, we present the first phase-sensitive extreme ultraviolet imaging reflectometer. It combines the excellent phase stability of coherent high-harmonic sources, the unique chemical sensitivity of extreme ultraviolet reflectometry, and state-of-the-art ptychography imaging algorithms. This tabletop microscope can nondestructively probe surface topography, layer thicknesses, and interface quality, as well as dopant concentrations and profiles. High-fidelity imaging was achieved by implementing variable-angle ptychographic imaging, by using total variation regularization to mitigate noise and artifacts in the reconstructed image, and by using a high-brightness, high-harmonic source with excellent intensity and wavefront stability. We validate our measurements through multiscale, multimodal imaging to show that this technique has unique advantages compared with other techniques based on electron and scanning probe microscopies.

11.
ACS Appl Mater Interfaces ; 12(46): 51517-51522, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33158360

RESUMO

A series of covalent organic frameworks substituted with azo groups (AzoCOFs) have been synthesized via imine condensation. The obtained frameworks show crystallinity and high stability. More importantly, the AzoCOFs exhibit exceptionally high ideal adsorption solution theory (IAST) selectivity in adsorption of C2H2 (35-2891) over CH4 at 273 K and 1 bar, owing to the favorable interactions between azo groups and acetylene molecules. The dependence of the gas adsorption property on pore size and polarity of the frameworks was also studied. The triethylene glycol substituted Tg-AzoCOF shows the highest C2H2/CH4 selectivity (IAST selectivity of 2891), which represents the highest reported for all porous materials. The AzoCOFs also exhibit high IAST adsorption selectivity of C2H4/CH4 (11-20), C2H6/CH4 (15-22), and CO2/CH4 (12-37), which is comparable with most porous materials, thus showing their great potential in gas separation applications.

12.
Nanoscale ; 12(4): 2596-2602, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31939958

RESUMO

The hydrogen evolution reaction (HER) is one of the most effective and sustainable ways to produce hydrogen gas as an alternative clean fuel. The rate of this electrocatalytic reaction is highly dependent on the properties (dispersity and stability) of electrocatalysts. Herein, we developed well-dispersed and highly stable platinum nanoparticles (PtNPs) supported on a covalent organic framework (COF-bpyTPP), which exhibit excellent catalytic activities toward HER as well as the hydride reduction reaction. The nanoparticles have an average size of 2.95 nm and show superior catalytic performance compared to the commercially available Pt/C under the same alkaline conditions, producing 13 times more hydrogen with a far more positive onset potential (-0.13 V vs.-0.63 V) and ca. 100% faradaic efficiency. The reaction rate of the hydride reduction of 4-nitrophenol was also 10 times faster in the case of PtNPs@COF compared to the commercial Pt/C under the same loading and conditions. More importantly, the PtNPs@COF are highly stable under the aqueous reactions conditions and can be reused without showing noticeable aggregation and activity degradation.

13.
ACS Appl Mater Interfaces ; 10(42): 36275-36283, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30270613

RESUMO

Luminescent carbon dots (Cdots) synthesized using inexpensive precursors have inspired tremendous research interest because of their superior properties and applicability in various fields. In this work, we report a simple, economical, green route for the synthesis of multifunctional fluorescent Cdots prepared from a natural, low-cost source: collagen extracted from animal skin wastes. The as-synthesized metal-free Cdots were found to be in the size range of ∼1.2-9 nm, emitting bright blue photoluminescence with a calculated Cdot yield of ∼63%. Importantly, the soft-lithographic method used was inexpensive and yielded a variety of Cdot patterns with different geometrical structures and significant cellular biocompatibility. This novel approach to Cdot production highlights innovative ways of transforming industrial biowastes into advanced multifunctional materials which offer exciting potential for applications in nanophotonics and nanobiotechnology using a simple and scalable technique.


Assuntos
Carbono/química , Colágeno/química , Luminescência , Impressão , Pontos Quânticos/química , Animais , Materiais Biocompatíveis/química , Fluorescência , Camundongos , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Água
14.
Adv Mater ; 30(44): e1803366, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30239044

RESUMO

The transformation from semiconducting to metallic phase, accompanied by a structural transition in 2D transition metal dichalcogenides has attracted the attention of the researchers worldwide. The unconventional structural transformation of fluorinated WS2 (FWS2 ) into the 1T phase is described. The energy difference between the two phases debugs this transition, as fluorination enhances the stability of 1T FWS2 and makes it energetically favorable at higher F concentration. Investigation of the electronic and optical nature of FWS2 is supplemented by possible band structures and bandgap calculations. Magnetic centers in the 1T phase appear in FWS2 possibly due to the introduction of defect sites. A direct consequence of the phase transition and associated increase in interlayer spacing is a change in friction behavior. Friction force microscopy is used to determine this effect of functionalization accompanied phase transformation.

15.
Nano Lett ; 18(6): 3752-3758, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29771126

RESUMO

Nanoparticles of some metals (Cu/Ag/Au) sustain oscillations of their electron cloud called localized surface plasmon resonances (LSPRs). These resonances can occur at optical frequencies and be driven by light, generating enhanced electric fields and spectacular photon scattering. However, current plasmonic metals are rare, expensive, and have a limited resonant frequency range. Recently, much attention has been focused on earth-abundant Al, but Al nanoparticles cannot resonate in the IR. The earth-abundant Mg nanoparticles reported here surmount this limitation. A colloidal synthesis forms hexagonal nanoplates, reflecting Mg's simple hexagonal lattice. The NPs form a thin self-limiting oxide layer that renders them stable suspended in 2-propanol solution for months and dry in air for at least two week. They sustain LSPRs observable in the far-field by optical scattering spectroscopy. Electron energy loss spectroscopy experiments and simulations reveal multiple size-dependent resonances with energies across the UV, visible, and IR. The symmetry of the modes and their interaction with the underlying substrate are studied using numerical methods. Colloidally synthesized Mg thus offers a route to inexpensive, stable nanoparticles with novel shapes and resonances spanning the entire UV-vis-NIR spectrum, making them a flexible addition to the nanoplasmonics toolbox.

16.
Nano Lett ; 17(12): 7908-7913, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29116809

RESUMO

We show that thermoelectric materials can function as electrocatalysts and use thermoelectric voltage generated to initiate and boost electrocatalytic reactions. The electrocatalytic activity is promoted by the use of nanostructured thermoelectric materials in a hydrogen evolution reaction (HER) by the thermoelectricity generated from induced temperature gradients. This phenomenon is demonstrated using two-dimensional layered thermoelectric materials Sb2Te3 and Bi0.5Sb1.5Te3 where a current density approaching ∼50 mA/cm2 is produced at zero potential for Bi0.5Sb1.5Te3 in the presence of a temperature gradient of 90 °C. In addition, the turnover frequency reaches to 2.7 s-1 at 100 mV under this condition which was zero in the absence of temperature gradient. This result adds a new dimension to the properties of thermoelectric materials which has not been explored before and can be applied in the field of electrocatalysis and energy generation.

17.
ACS Nano ; 11(10): 10281-10288, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28945360

RESUMO

Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.

18.
ACS Nano ; 11(7): 6930-6941, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28656759

RESUMO

The cathodic oxygen reduction reaction (ORR) is essential in the electrochemical energy conversion of fuel cells. Here, through the NH3 atmosphere annealing of a graphene oxide (GO) precursor containing trace amounts of Ru, we have synthesized atomically dispersed Ru on nitrogen-doped graphene that performs as an electrocatalyst for the ORR in acidic medium. The Ru/nitrogen-doped GO catalyst exhibits excellent four-electron ORR activity, offering onset and half-wave potentials of 0.89 and 0.75 V, respectively, vs a reversible hydrogen electrode (RHE) in 0.1 M HClO4, together with better durability and tolerance toward methanol and carbon monoxide poisoning than seen in commercial Pt/C catalysts. X-ray adsorption fine structure analysis and aberration-corrected high-angle annular dark-field scanning transmission electron microscopy are performed and indicate that the chemical structure of Ru is predominantly composed of isolated Ru atoms coordinated with nitrogen atoms on the graphene substrate. Furthermore, a density function theory study of the ORR mechanism suggests that a Ru-oxo-N4 structure appears to be responsible for the ORR catalytic activity in the acidic medium. These findings provide a route for the design of efficient ORR single-atom catalysts.

19.
Nano Lett ; 17(4): 2611-2620, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28337921

RESUMO

Doped metal oxides are plasmonic materials that boast both synthetic and postsynthetic spectral tunability. They have already enabled promising smart window and optoelectronic technologies and have been proposed for use in surface enhanced infrared absorption spectroscopy (SEIRA) and sensing applications. Herein, we report the first step toward realization of the former utilizing cubic F and Sn codoped In2O3 nanocrystals (NCs) to couple to the C-H vibration of surface-bound oleate ligands. Electron energy loss spectroscopy is used to map the strong near-field enhancement around these NCs that enables localized surface plasmon resonance (LSPR) coupling between adjacent nanocrystals and LSPR-molecular vibration coupling. Fourier transform infrared spectroscopy measurements and finite element simulations are applied to observe and explain the nature of the coupling phenomena, specifically addressing coupling in mesoscale assembled films. The Fano line shape signatures of LSPR-coupled molecular vibrations are rationalized with two-port temporal coupled mode theory. With this combined theoretical and experimental approach, we describe the influence of coupling strength and relative detuning between the molecular vibration and LSPR on the enhancement factor and further explain the basis of the observed Fano line shape by deconvoluting the combined response of the LSPR and molecular vibration in transmission, absorption and reflection. This study therefore illustrates various factors involved in determining the LSPR-LSPR and LSPR-molecular vibration coupling for metal oxide materials and provides a fundamental basis for the design of sensing or SEIRA substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA