Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2927, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575594

RESUMO

Fractional charges are one of the wonders of the fractional quantum Hall effect. Such objects are also anticipated in two-dimensional hexagonal lattices under time reversal symmetry-emerging as bound states of a rotating bond texture called a Kekulé vortex. However, the physical mechanisms inducing such topological defects remain elusive, preventing experimental realization. Here, we report the observation of Kekulé vortices in the local density of states of graphene under time reversal symmetry. The vortices result from intervalley scattering on chemisorbed hydrogen adatoms. We uncover that their 2π winding is reminiscent of the Berry phase π of the massless Dirac electrons. We can also induce a Kekulé pattern without vortices by creating point scatterers such as divacancies, which break different point symmetries. Our local-probe study thus confirms point defects as versatile building blocks for Kekulé engineering of graphene's electronic structure.

2.
Nature ; 627(8002): 67-72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448698

RESUMO

Ordinary metals contain electron liquids within well-defined 'Fermi' surfaces at which the electrons behave as if they were non-interacting. In the absence of transitions to entirely new phases such as insulators or superconductors, interactions between electrons induce scattering that is quadratic in the deviation of the binding energy from the Fermi level. A long-standing puzzle is that certain materials do not fit this 'Fermi liquid' description. A common feature is strong interactions between electrons relative to their kinetic energies. One route to this regime is special lattices to reduce the electron kinetic energies. Twisted bilayer graphene1-4 is an example, and trihexagonal tiling lattices (triangular 'kagome'), with all corner sites removed on a 2 × 2 superlattice, can also host narrow electron bands5 for which interaction effects would be enhanced. Here we describe spectroscopy revealing non-Fermi-liquid behaviour for the ferromagnetic kagome metal Fe3Sn2 (ref. 6). We discover three C3-symmetric electron pockets at the Brillouin zone centre, two of which are expected from density functional theory. The third and most sharply defined band emerges at low temperatures and binding energies by means of fractionalization of one of the other two, most likely on the account of enhanced electron-electron interactions owing to a flat band predicted to lie just above the Fermi level. Our discovery opens the topic of how such many-body physics involving flat bands7,8 could differ depending on whether they arise from lattice geometry or from strongly localized atomic orbitals9,10.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA