Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37755254

RESUMO

The objective of the study was to investigate the preventive effect on obesity-related conditions of rosemary (Rosmarinus officinalis L.) extract (RE) in young, healthy rats fed a high-fat Western-style diet to complement the existing knowledge gap concerning the anti-obesity effects of RE in vivo. Sprague Dawley rats (71.3 ± 0.46 g) were fed a high-fat Western-style diet (WD) or WD containing either 1 g/kg feed or 4 g/kg feed RE for six weeks. A group fed standard chow served as a negative control. The treatments did not affect body weight; however, the liver fat percentage was reduced in rats fed RE, and NMR analyses of liver tissue indicated that total cholesterol and triglycerides in the liver were reduced. In plasma, HDL cholesterol was increased while triglycerides were decreased. Rats fed high RE had significantly increased fasting plasma concentrations of Glucagon-like peptide-1 (GLP-1). Proteomics analyses of liver tissue showed that RE increased enzymes involved in fatty acid oxidation, possibly associated with the higher fasting GLP-1 levels, which may explain the improvement of the overall lipid profile and hepatic fat accumulation. Furthermore, high levels of succinic acid in the cecal content of RE-treated animals suggested a modulation of the microbiota composition. In conclusion, our results suggest that RE may alleviate the effects of consuming a high-fat diet through increased GLP-1 secretion and changes in microbiota composition.

2.
PLoS One ; 16(12): e0260765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855861

RESUMO

The past two decades of research have raised gut microbiota composition as a contributing factor to the development of obesity, and higher abundance of certain bacterial species has been linked to the lean phenotype, such as Akkermansia muciniphila. The ability of pre- and probiotics to affect metabolic health could be via microbial community alterations and subsequently changes in metabolite profiles, modulating for example host energy balance via complex signaling pathways. The aim of this mice study was to determine how administration of a prebiotic fiber, polydextrose (PDX) and a probiotic Bifidobacterium animalis ssp. lactis 420 (B420), during high fat diet (HFD; 60 kcal% fat) affects microbiota composition in the gastrointestinal tract and adipose tissue, and metabolite levels in gut and liver. In this study C57Bl/6J mice (N = 200) were split in five treatments and daily gavaged: 1) Normal control (NC); 2) HFD; 3) HFD + PDX; 4) HFD + B420 or 5) HFD + PDX + B420 (HFD+S). At six weeks of treatment intraperitoneal glucose-tolerance test (IPGTT) was performed, and feces were collected at weeks 0, 3, 6 and 9. At end of the intervention, ileum and colon mucosa, adipose tissue and liver samples were collected. The microbiota composition in fecal, ileum, colon and adipose tissue was analyzed using 16S rDNA sequencing, fecal and liver metabolomics were performed by nuclear magnetic resonance (NMR) spectroscopy. It was found that HFD+PDX intervention reduced body weight gain and hepatic fat compared to HFD. Sequencing the mice adipose tissue (MAT) identified Akkermansia and its prevalence was increased in HFD+S group. Furthermore, by the inclusion of PDX, fecal, lleum and colon levels of Akkermansia were increased and liver health was improved as the detoxification capacity and levels of methyl-donors were increased. These new results demonstrate how PDX and B420 can affect the interactions between gut, liver and adipose tissue.


Assuntos
Akkermansia/isolamento & purificação , Bifidobacterium animalis/química , Trato Gastrointestinal/efeitos dos fármacos , Glucanos/administração & dosagem , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Fígado/efeitos dos fármacos , Obesidade/fisiopatologia , Akkermansia/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Metabolismo Energético , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Fígado/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prevalência , Probióticos/administração & dosagem
3.
Sci Rep ; 9(1): 7983, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138818

RESUMO

Human milk oligosaccharides (HMOs) function as prebiotics for beneficial bacteria in the developing gut, often dominated by Bifidobacterium spp. To understand the relationship between bifidobacteria utilizing HMOs and how the metabolites that are produced could affect the host, we analyzed the metabolism of HMO 2'-fucosyllactose (2'-FL) in Bifidobacterium longum subsp. infantis Bi-26. RNA-seq and metabolite analysis (NMR/GCMS) was performed on samples at early (A600 = 0.25), mid-log (0.5-0.7) and late-log phases (1.0-2.0) of growth. Transcriptomic analysis revealed many gene clusters including three novel ABC-type sugar transport clusters to be upregulated in Bi-26 involved in processing of 2'-FL along with metabolism of its monomers glucose, fucose and galactose. Metabolite data confirmed the production of formate, acetate, 1,2-propanediol, lactate and cleaving of fucose from 2'-FL. The formation of acetate, formate, and lactate showed how the cell uses metabolites during fermentation to produce higher levels of ATP (mid-log compared to other stages) or generate cofactors to balance redox. We concluded that 2'-FL metabolism is a complex process involving multiple gene clusters, that produce a more diverse metabolite profile compared to lactose. These results provide valuable insight on the mode-of-action of 2'-FL utilization by Bifidobacterium longum subsp. infantis Bi-26.


Assuntos
Proteínas de Bactérias/genética , Bifidobacterium longum subspecies infantis/metabolismo , Microbioma Gastrointestinal/fisiologia , Leite Humano/química , Transcriptoma , Trissacarídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/biossíntese , Proteínas de Bactérias/metabolismo , Bifidobacterium longum subspecies infantis/genética , Feminino , Fermentação , Fucose/metabolismo , Galactose/metabolismo , Galactosidases/genética , Galactosidases/metabolismo , Glucose/metabolismo , Humanos , Família Multigênica , Prebióticos/análise , Análise de Componente Principal , Simbiose/fisiologia , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
4.
J Agric Food Chem ; 65(46): 10123-10130, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29083175

RESUMO

Global warming may modify the timing of dormancy release and spring growth of buds of temperate fruit crops. Environmental regulation of the activity-dormancy cycle in perennial plants remains poorly understood at the metabolic level. Especially, the fine-scale metabolic dynamics in the meristematic zone within buds has received little attention. In this work we performed metabolic profiling of intact floral primordia of Ribes nigrum isolated from buds differing in dormancy status using high-resolution magic angle spinning (HR-MAS) NMR. The technique proved useful in monitoring different groups of metabolites, e.g., carbohydrates and amino acids, in floral primordia and allowed metabolic separation of primordia from endo- and ecodormant buds. In addition, due to its nondestructive character, HR-MAS NMR may provide novel insights into cellular compartmentation of individual biomolecules that cannot be obtained using liquid-state NMR. Out results show that HR-MAS NMR may be an important method for metabolomics of intact plant structures.


Assuntos
Flores/química , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Ribes/química , Aminoácidos/química , Aminoácidos/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Metaboloma , Ribes/crescimento & desenvolvimento , Ribes/metabolismo
5.
Metabolites ; 3(1): 33-46, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24957889

RESUMO

In the present study, proton NMR-based metabonomics was applied on femoral arterial plasma samples collected from young male subjects (milk protein n = 12 in a crossover design; non-caloric control n = 8) at different time intervals (70, 220, 370 min) after heavy resistance training and intake of either a whey or calcium caseinate protein drink in order to elucidate the impact of the protein source on post-exercise metabolism, which is important for muscle hypertrophy. Dynamic changes in the post-exercise plasma metabolite profile consisted of fluctuations in alanine, beta-hydroxybutyrate, branched amino acids, creatine, glucose, glutamine, glutamate, histidine, lipids and tyrosine. In comparison with the intake of a non-caloric drink, the same pattern of changes in low-molecular weight plasma metabolites was found for both whey and caseinate intake. However, the study indicated that whey and caseinate protein intake had a different impact on low-density and very-low-density lipoproteins present in the blood, which may be ascribed to different effects of the two protein sources on the mobilization of lipid resources during energy deficiency. In conclusion, no difference in the effects on low-molecular weight metabolites as measured by proton NMR-based metabonomics was found between the two protein sources.

6.
Br J Nutr ; 107(11): 1603-15, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22673149

RESUMO

The objective of the present explorative study was to determine the absorption dynamics when feeding diets varying in types and levels of dietary fibre in a catheterised animal model. A total of six sows were fed a diet low in fibre (LF), a diet high in soluble fibre and a diet high in insoluble fibre in a repeated 3 × 3 cross-over design. Plasma samples were collected from the mesenteric artery and the portal vein to determine different absorption phases by ¹H NMR spectroscopy-based metabonomics. Time profiles were determined for plasma levels of specific metabolites and for the absorption of these metabolites from the small intestine. The LF diet resulted in a higher betaine concentration in the blood than the two high-fibre diets (P=0·008). This leads to higher plasma concentrations of methionine (P=0·0028) and creatine (P=0·020) of endogenous origin. In conclusion, the use of NMR spectroscopy for measuring nutrient uptake in the present study elucidated the relationship between betaine uptake and elevated creatine plasma concentrations.


Assuntos
Betaína/metabolismo , Creatina/sangue , Fibras na Dieta/efeitos adversos , Absorção Intestinal , Metabolômica/métodos , Animais , Biomarcadores/sangue , Cateteres de Demora , Estudos Cross-Over , Fibras na Dieta/administração & dosagem , Fibras na Dieta/análise , Feminino , Intestino Delgado/metabolismo , Espectroscopia de Ressonância Magnética , Artérias Mesentéricas , Metionina/sangue , Veia Porta , Solubilidade , Sus scrofa , Fatores de Tempo
7.
J Agric Food Chem ; 59(23): 12499-505, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22059599

RESUMO

NMR-based metabolomics was applied on urine samples from 32 cows that were fed four levels of crude protein (124, 135, 151, and 166 g/kg DM, respectively) in a crossover design with the aim of identifying urinary metabolites related to nitrogen intake and nitrogen efficiency. Principal component analysis (PCA) on selected regions of the obtained (1)H NMR spectra revealed an effect of crude protein intake on NMR signals in the 0.5-3.0 and 5.0-10.0 ppm regions. Partial least-squares (PLS) regressions confirmed a correlation between the NMR metabolite profile and both nitrogen intake and efficiency. The NMR signals that correlated with nitrogen intake and efficiency included urea, hippurate, phenylacetylglutamine, and p-cresol sulfate, which all contributed to the prediction of nitrogen intake and efficiency. Thus, it was not possible to identify a single metabolite that could be used as a marker to predict nitrogen efficiency, and it can be concluded that a wide-ranging urinary metabolite profile is needed to evaluate nitrogen efficiency in ruminants.


Assuntos
Bovinos/urina , Dieta/veterinária , Espectroscopia de Ressonância Magnética , Metabolômica , Nitrogênio/administração & dosagem , Animais , Biomarcadores/urina , Estudos Cross-Over , Proteínas Alimentares/administração & dosagem , Feminino
8.
J Biol Chem ; 286(32): 28382-95, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21680746

RESUMO

Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated by exchanging the dietary protein source from casein to salmon protein hydrolysate (SPH). Importantly, the SPH-treated rats were resistant to diet-induced obesity. SPH-treated rats had reduced fed state plasma glucose and TAG levels and lower TAG in liver. The elevated plasma BA concentration was associated with induction of genes involved in energy metabolism and uncoupling, Dio2, Pgc-1α, and Ucp1, in interscapular brown adipose tissue. Interestingly, the same transcriptional pattern was found in white adipose tissue depots of both abdominal and subcutaneous origin. Accordingly, rats fed SPH-based diet exhibited increased whole body energy expenditure and heat dissipation. In skeletal muscle, expressions of the peroxisome proliferator-activated receptor ß/δ target genes (Cpt-1b, Angptl4, Adrp, and Ucp3) were induced. Pharmacological removal of BAs by inclusion of 0.5 weight % cholestyramine to the high fat SPH diet attenuated the reduction in abdominal obesity, the reduction in liver TAG, and the decrease in nonfasted plasma TAG and glucose levels. Induction of Ucp3 gene expression in muscle by SPH treatment was completely abolished by cholestyramine inclusion. Taken together, our data provide evidence that bile acid metabolism can be modulated by diet and that such modulation may prevent/ameliorate the characteristic features of the metabolic syndrome.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ácidos e Sais Biliares/metabolismo , Proteínas Alimentares/farmacologia , Fígado/metabolismo , Síndrome Metabólica/dietoterapia , Síndrome Metabólica/metabolismo , Músculo Esquelético/metabolismo , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/metabolismo , Animais , Feminino , Glucose/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Iodeto Peroxidase/metabolismo , Canais Iônicos , Masculino , Proteínas de Membrana/metabolismo , Síndrome Metabólica/sangue , Camundongos , Proteínas Mitocondriais , PPAR beta/metabolismo , Perilipina-2 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/metabolismo , Salmão , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Proteína Desacopladora 1 , Iodotironina Desiodinase Tipo II
9.
Arch Anim Nutr ; 65(6): 460-76, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22256676

RESUMO

The aim of the present study was to examine the biochemical influence of feeding high dietary fibre (DF) diets formulated from by-products from the vegetable and agricultural industries to sows during early to mid-gestation. The effect of feeding frequency (once vs. twice daily) on diurnal plasma metabolites patterns was also examined. The study included a total of 48 gestating sows from four blocks (12 gestating sows in each block). The sows were fed four different diets containing varying levels of starch (304-519 g/kg dry matter (DM)) and DF (171-404 g/kg DM) but with equal amounts of net energy. The low-DF diet (control) was based on barley and wheat, and the three high-DF diets formulated by replacing barley and wheat by pectin residue, sugar beet pulp and potato pulp, respectively. The experimental design comprised two periods of 4 weeks each. Half the sows were fed once daily at 08:00 h in the first period and twice daily at 08:00 and 15:00 h during the second period, and vice versa for the other half of the sows. Plasma samples from vena jugularis were collected by venipuncture at 07:00, 09:00, 12:00 and 19:00 h. Feeding high-DF increased plasma short-chain fatty acids (p = 0.02) and non-esterified fatty acids (p < 0.001). However, there was no clear effect of DF on glucose and insulin responses. A negative correlation between amount of DF in the diets and plasma creatine (R2 = 1.00; diet effect: p = 0.02) suggested that plasma creatine concentrations was an indicator for the level of glucose-glycogen interchange. Furthermore, an explorative approach using nuclear magnetic resonance spectroscopy-based metabonomics identified betaine (p < 0.001), dimethyl sulfone (DMSO2; p < 0.001) and scyllo-inositol (p < 0.001) as biomarkers for the different by-products; pectin residue was related to high plasma levels of DMSO2, sugar beet pulp to plasma betaine, DMSO2 and scyllo-inositol, and potato pulp to plasma DMSO2 and scyllo-inositol. In conclusion, replacing starch by DF affected surprisingly few metabolites in peripheral plasma. No negative effects were found in feeding pectin residue, sugar beet pulp or potato pulp for gestating sows as judged from the minor metabolic changes.


Assuntos
Ração Animal/análise , Fibras na Dieta/análise , Fibras na Dieta/farmacologia , Suínos/sangue , Suínos/metabolismo , Verduras , Agricultura , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Carboidratos da Dieta/análise , Feminino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA