RESUMO
[This corrects the article DOI: 10.1016/j.omtn.2021.02.027.].
RESUMO
Uncovering the risk factors of pulmonary hypertension and its mechanisms is crucial for the prevention and treatment of the disease. In the current study, we showed that experimental periodontitis, which was established by ligation of molars followed by orally smearing subgingival plaques from patients with periodontitis, exacerbated hypoxia-induced pulmonary hypertension in mice. Mechanistically, periodontitis dysregulated the pulmonary microbiota by promoting ectopic colonization and enrichment of oral bacteria in the lungs, contributing to pulmonary infiltration of interferon gamma positive (IFNγ+) T cells and aggravating the progression of pulmonary hypertension. In addition, we identified Prevotella zoogleoformans as the critical periodontitis-associated bacterium driving the exacerbation of pulmonary hypertension by periodontitis, and the exacerbation was potently ameliorated by both cervical lymph node excision and IFNγ neutralizing antibodies. Our study suggests a proof of concept that the combined prevention and treatment of periodontitis and pulmonary hypertension are necessary.
Assuntos
Placa Dentária , Hipertensão Pulmonar , Periodontite , Humanos , Camundongos , Animais , Linfócitos T/patologia , Bactérias , Placa Dentária/microbiologiaRESUMO
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is frequently accompanied by perineural invasion (PNI), which is associated with excruciating neuropathic pain and malignant progression. However, the relationship between PNI and tumour stromal cells has not been clarified. METHODS: The dorsal root ganglia or sciatic nerves nerve model was used to observe the paracrine interaction and the activation effect among Schwann cells, tumour-associated macrophages (TAMs), and pancreatic cancer cells in vitro. Next generation sequencing, enzyme-linked immunosorbent assay and chromatin immunoprecipitation were used to explore the specific paracrine signalling between TAMs and Schwann cells. RESULTS: We demonstrated that more macrophages were expressed around nerves that have been infiltrated by pancreatic cancer cells compared with normal nerves in murine and human PNI specimens. In addition, high expression of CD68 or GFAP is associated with an increased incidence of PNI and indicates a poor 5-year survival rate in patients with PDAC. Mechanistically, tumour-associated macrophages (TAMs) activate Schwann cells via the bFGF/PI3K/Akt/c-myc/GFAP pathway. Schwann cells secrete IL-33 to recruit macrophages into the perineural milieu and facilitate the M2 pro-tumourigenic polarisation of macrophages. CONCLUSIONS: Our study demonstrates that the bFGF/IL-33 positive feedback loop between Schwann cells and TAMs is essential in the process of PNI of PDAC. The bFGF/PI3K/Akt/c-myc/GFAP pathway would open potential avenues for targeted therapy of PDAC.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Interleucina-33 , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Células de Schwann/metabolismo , Células de Schwann/patologia , Invasividade NeoplásicaRESUMO
The microbiota plays an important role in both hypertension (HTN) and periodontitis (PD), and PD exacerbates the development of HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, which is also a member of the microbiota. We collected 180 samples of subgingival plaques, saliva, and feces from a cohort of healthy subjects (nHTNnPD), subjects with HTN (HTNnPD) or PD (PDnHTN), and subjects with both HTN and PD (HTNPD). We performed metagenomic sequencing to assess the roles of the oral and gut viromes in HTN and PD. The HTNnPD, PDnHTN, and HTNPD groups all showed significantly distinct beta diversity from the nHTNnPD group in saliva. We analyzed alterations in oral and gut viral composition in HTN and/or PD and identified significantly changed viruses in each group. Many viruses across three sites were significantly associated with blood pressure and other clinical parameters. Combined with these clinical associations, we found that Gillianvirus in subgingival plaques was negatively associated with HTN and that Torbevirus in saliva was positively associated with HTN. We found that Pepyhexavirus from subgingival plaques was indicated to be transferred to the gut. We finally evaluated viral-bacterial transkingdom interactions and found that viruses and bacteria may cooperate to affect HTN and PD. Correspondingly, HTN and PD may synergize to improve communications between viruses and bacteria.IMPORTANCEPeriodontitis (PD) and hypertension (HTN) are both highly prevalent worldwide and cause serious adverse outcomes. Increasing studies have shown that PD exacerbates HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, even though viruses are common inhabitants in humans. Alterations in oral and gut viral diversity and composition contribute to diseases. The present study, for the first time, profiled the oral and gut viromes in HTN and/or PD. We identified key indicator viruses and their clinical implications in HTN and/or PD. We also investigated interactions between viruses and bacteria. This work improved the overall understanding of the viromes in HTN and PD, providing vital insights into the role of the virome in the development of HTN and PD.
Assuntos
Hipertensão , Microbiota , Periodontite , Vírus , Humanos , Viroma , Vírus/genética , Microbiota/genéticaRESUMO
BACKGROUND: The effectiveness of immune checkpoint inhibitors in treating gallbladder cancer (GBC) remains unsatisfactory. Recently, several new immune checkpoints have been identified. However, investigations exploring these immune checkpoints in GBC are limited. In this study, we aim to investigate the expression patterns and clinical implications of various immune checkpoints, and further characterize the spatial and quantitative heterogeneity of immune components in GBC. METHODS: We employed single and multiplex immunohistochemistry to evaluate the expression of five immune checkpoint markers and four immune cell markers in the primary tumor core, hepatic invasion margin, and liver metastasis. Subsequently, we analyzed their interrelationships and their prognostic significance. RESULTS: We observed a robust positive correlation between PD1/TIM3 expression in GBC (R = 0.614, P < 0.001). The co-expression of PD1/TIM3 exhibited a synergistic effect in predicting poor prognosis among postoperative GBC patients. Further analysis revealed that the prognostic significance of PD1/TIM3 was prominent in the subgroup with high infiltration of CD8 + T cells (P < 0.001). Multiplex immunohistochemistry reveals that PD1 + TIM3 + FOXP3 + cells constitute a significant proportion of FOXP3 + TILs in GBC tissue. Moreover, the co-high expression of PD1 and TIM3 is positively correlated with the accumulation of CD8 + TILs at the hepatic invasion margin. Lastly, our findings indicated reduced expression levels of immune checkpoints and diminished immune cell infiltration in liver metastases compared to primary tumors. CONCLUSIONS: Increased co-expression of PD1/TIM3 is associated with poor prognosis in GBC patients and is related to the heterogeneity of immune microenvironment between GBC primary tumor and its hepatic invasion margin or liver metastases, which may be a potential target for future immunotherapy of GBC.
Assuntos
Neoplasias da Vesícula Biliar , Neoplasias Hepáticas , Humanos , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos , Fatores de Transcrição Forkhead/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Neoplasias Hepáticas/patologia , Linfócitos do Interstício Tumoral , Prognóstico , Microambiente Tumoral , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismoRESUMO
Background: Prone positioning has evolved as a therapeutic intervention for patients with acute respiratory distress syndrome (ARDS). ARDS remains a critical condition, with a mortality rate of approximately 40%. Prone positioning, which involves placing patients in a face-down position, has the potential to enhance gas exchange and improve lung mechanics, possibly leading to better patient outcomes. Objectives: This comprehensive review aims to evaluate the impact of prone positioning on mortality (primary outcome) and the occurrence of adverse events (secondary outcome) in patients with ARDS compared to conventional supine positioning. Methods: We conducted an extensive systematic review, including studies published from 2000 to 2022. We searched databases including PUBMED, MEDLINE, EMBASE, CENTRAL, and WEB OF SCIENCE. Only randomized controlled trials (RCTs) that compared the outcomes of patients with ARDS in prone and supine positions were included. We employed the Cochrane risk of bias instrument to assess the methodological quality of the included RCTs. Results: Our review included a total of twelve RCTs involving 2736 patients, with 1401 patients in the prone position. The meta-analysis demonstrated a lower mortality rate among patients in the prone position compared to those in the supine position (odds ratio [OR], 0.71; 95% confidence interval [CI], 0.52-0.98; P = .04). Notably, there was a higher incidence of pressure sores in patients placed in the prone position (OR, 0.15; 95% CI, 0.09-0.20) compared to those in the supine position. However, there were no statistically significant differences in the occurrence of arrhythmias, unplanned extubation, or pneumothorax between the two positioning strategies. Conclusions: Prone positioning offers potential benefits for patients with ARDS by reducing mortality rates. However, it is important to note that there is an associated risk of pressure sores. Further research and clinical consideration are needed to optimize the use of prone positioning in ARDS management.
RESUMO
Three-dimensional surface-conformable electronics is a burgeoning technology with potential applications in curved displays, bioelectronics, and biomimetics. Flexible electronics are notoriously difficult to fully conform to nondevelopable surfaces such as spheres. Although stretchable electronics can well conform to nondevelopable surfaces, they need to sacrifice pixel density for stretchability. Various empirical designs have been explored to improve the conformability of flexible electronics on spherical surfaces. However, no rational design guidelines exist. This study uses a combination of experimental, analytical, and numerical approaches to systematically investigate the conformability of both intact and partially cut circular sheets on spherical surfaces. Through the analysis of thin film buckling on curved surfaces, we identify a scaling law that predicts the conformability of flexible sheets on spherical surfaces. We also quantify the effects of radial slits on enhancing conformability and provide a practical guideline for using these slits to improve conformability from 40% to more than 90%.
RESUMO
Mineralocorticoid receptor (MR) is a classic nuclear receptor and an effective drug target in the cardiovascular system. The function of MR in immune cells such as macrophages and T cells has been increasingly appreciated. The aim of this study was to investigate the function of Treg MR in the process of inflammatory bowel disease (IBD). We treated Treg MR-deficient (MRflox/flox Foxp3YFP-Cre , KO) mice and control (Foxp3YFP-Cre , WT) mice with dextran sodium sulphate (DSS) to induce colitis and found that the severity of DSS-induced colitis was markedly alleviated in Treg MR-deficient mice, accompanied by reduced production of inflammatory cytokines, and relieved infiltration of monocytes, neutrophils and interferon γ+ T cells in colon lamina propria. Faecal microbiota of mice with colitis was analysed by 16S rRNA gene sequencing and the composition of gut microbiota was vastly changed in Treg MR-deficient mice. Furthermore, depletion of gut microbiota by antibiotics abolished the protective effects of Treg MR deficiency and resulted in similar severity of DSS-induced colitis in WT and KO mice. Faecal microbiota transplantation from KO mice attenuated DSS-induced colitis characterized by alleviated inflammatory infiltration compared to that from WT mice. Hence, our study demonstrates that Treg MR deficiency protects against DSS-induced colitis by attenuation of colonic inflammatory infiltration. Gut microbiota is both sufficient and necessary for Treg MR deficiency to exert the beneficial effects.
Assuntos
Colite , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/terapia , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Receptores de Mineralocorticoides/genética , Linfócitos T ReguladoresRESUMO
BACKGROUND: An association has been hypothesized between periodontitis and hypertension. Periodontal therapy is believed to reduce systemic inflammatory mediators and increase endothelial function, thus having the potential to prevent and treat hypertension. OBJECTIVES: To assess the effect and safety of different periodontal treatment modalities on blood pressure (BP) in people with chronic periodontitis. SEARCH METHODS: The Cochrane Hypertension Information Specialist searched for randomized controlled trials (RCTs) up to November 2020 in the Cochrane Hypertension Specialised Register, CENTRAL, MEDLINE, Embase, seven other databases, and two clinical trials registries. We contacted the authors of relevant papers regarding further published and unpublished work. SELECTION CRITERIA: RCTs and quasi-RCTs aiming to detect the effect of periodontal treatment on BP were eligible. Participants should have been diagnosed with chronic periodontitis and hypertension (or no hypertension if the study explored the preventive effect of periodontal treatment). Participants in the intervention group should have undergone subgingival scaling and root planing (SRP) and any other type of periodontal treatments, compared with either no periodontal treatment or alternative periodontal treatment in the control group. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane for study identification, data extraction, and risk of bias assessment. We used a formal pilot-tested data extraction form for data extraction, and the Cochrane risk of bias tool for risk of bias assessment. We planned the meta-analysis, test for heterogeneity, sensitivity analysis, and subgroup analysis. We assessed the certainty of evidence using GRADE. The primary outcome was change in systolic BP (SBP) and diastolic BP (DBP). MAIN RESULTS: We included eight RCTs. Five had low risk of bias, one had unclear risk of bias, and two had high risk of bias. Four trials compared periodontal treatment with no treatment. We found no evidence of a difference in the short-term change of SBP and DBP for people diagnosed with periodontitis and other cardiovascular diseases except hypertension (very low-certainty evidence). We found no evidence of a difference in long-term changes in SBP (mean difference [MD] -2.25 mmHg, 95% confidence interval [CI] -9.41 to 4.92; P = 0.54; studies = 2, participants = 108; low-certainty evidence) and DBP (MD -2.55 mmHg, 95% CI -6.90 to 1.80; P = 0.25; studies = 2, participants = 103; low-certainty evidence). Concerning people diagnosed with periodontitis, in the short term, two studies of low certainty reported no changes in SBP (MD -0.14 mmHg, 95% CI -4.05 to 3.77; P = 0.94; participants = 294) and DBP (MD -0.15 mmHg, 95% CI -2.47 to 2.17; P = 0.90; participants = 294), and we found no evidence of a difference in SBP and DBP over a long period based on low certainty of evidence. Three studies compared intensive periodontal treatment with supra-gingival scaling. We found no evidence of a difference in changes in SBP and DBP for any length of time in people diagnosed with periodontitis (very low-certainty evidence). In people diagnosed with periodontitis and hypertension, we found one study reporting a significant reduction in the short term in SBP (MD -11.20 mmHg, 95% CI -15.40 to -7.00; P < 0.001; participants = 101; moderate-certainty evidence) and DBP (MD -8.40 mmHg, 95% CI -12.19 to -4.61; P < 0.0001; participants = 101; moderate-certainty evidence). AUTHORS' CONCLUSIONS: We found no evidence of a difference of an impact of periodontal treatments on BP in most comparisons assessed in this review, and given the low certainty of evidence and the lack of relevant studies we could not draw conclusions about the effect of periodontal treatment on BP in people with chronic periodontitis. We found only one study suggesting that periodontal treatment may reduce SBP and DBP over a short period in people with hypertension and chronic periodontitis, but the certainty of evidence was moderate.
Assuntos
Doenças Cardiovasculares , Periodontite Crônica , Hipertensão , Pressão Sanguínea , Periodontite Crônica/terapia , Humanos , Hipertensão/terapiaRESUMO
Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, and angiogenesis plays critical roles in its recurrence and metastasis. In this study, we investigated the effects of hypoxia-induced exosomal microRNA-181 (miR-181a) from PTC on tumor growth and angiogenesis. Thyroid-cancer-related differentially expressed miR-181a was identified by microarray-based analysis in the Gene Expression Omnibus (GEO) database. We validated that miR-181a was highly expressed in PTC cells and even more so in cells cultured under hypoxic conditions, which also augmented exosome secretion from PTC cells. Exosomes extracted from PTC cells with manipulated miR-181a and mixed-lineage leukemia 3 (MLL3) were subjected to normoxic or hypoxic conditions. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-181a inhibitor/mimic or small interfering RNA (siRNA)-MLL3 or treated with exosomes from hypoxic PTC cells. Hypoxic exosomal miR-181a delivery promoted proliferation and capillary-like network formation in HUVECs. Mechanistically, miR-181a targeted and inhibited MLL3. Furthermore, miR-181a downregulated DACT2 and upregulated YAP and vascular endothelial growth factor (VEGF). Further, hypoxic exosomal miR-181a induced angiogenesis and tumor growth in vivo, which was reversed by hypoxic exosomal miR-181a inhibitor. In conclusion, exosomal miR-181a from hypoxic PTC cells promotes tumor angiogenesis and growth through MLL3 and DACT2 downregulation, as well as VEGF upregulation.
RESUMO
Due to the lack of therapeutics and vaccines, diagnostics of COVID-19 emerges as one of the primary tools for controlling the spread of SARS-COV-2. Here we aim to develop a theoretical model to study the detection process of SARS-COV-2 in lateral flow device (LFD), which can achieve rapid antigen diagnostic tests. The LFD is modeled as the adhesion of a spherical nanoparticle (NP) coated with ligands on the surface, mimicking the SARS-COV-2, on an infinite substrate distributed with receptors under a simple shear flow. The adhesive behaviors of NPs in the LFD are governed by the ligand-receptor binding (LRB) and local hydrodynamics. Through energy balance analysis, three types of motion are predicted: (i) firm-adhesion (FA); (ii) adhesive-rolling (AR); and (iii) free-rolling (FR), which correspond to LRB-dominated, LRB-hydrodynamics-competed, and hydrodynamics-dominated regimes, respectively. The transitions of FA-to-AR and AR-to-FR are found to be triggered by overcoming LRB barrier and saturation of LRB torque, respectively. Most importantly, in the AR regime, the smaller NPs can move faster than their larger counterparts, induced by the LRB effect that depends on the radius R of NPs. In addition, a scaling law is found in the AR regime that v â γ Ë R α (rolling velocity v and shear rate γ Ë ), with an approximate scaling factor α â¼ - 0 . 2 ± 0 . 05 identified through fitting both theoretical and numerical results. The scaling factor emerges from the energy-based stochastic LRB model, and is confirmed to be universal by examining selections of different LRB model parameters. This size-dependent rolling behavior under the control of flow strength may provide the theoretical guidance for designing efficient LFD in detecting infectious disease.
RESUMO
Machine learning (ML) has emerged as one of the most powerful tools transforming all areas of science and engineering. The nature of molecular dynamics (MD) simulations, complex and time-consuming calculations, makes them particularly suitable for ML research. This review article focuses on recent advancements in developing efficient and accurate coarse-grained (CG) models using various ML methods, in terms of regulating the coarse-graining process, constructing adequate descriptors/features, generating representative training data sets, and optimization of the loss function. Two classes of the CG models are introduced: bottom-up and top-down CG methods. To illustrate these methods and demonstrate the open methodological questions, we survey several important principles in constructing CG models and how these are incorporated into ML methods and improved with specific learning techniques. Finally, we discuss some key aspects of developing machine-learned CG models with high accuracy and efficiency. Besides, we describe how these aspects are tackled in state-of-the-art methods and which remain to be addressed in the near future. We expect that these machine-learned CG models can address thermodynamic consistent, transferable, and representative issues in classical CG models.
RESUMO
We investigate the circulation of nano- and micro-particles, including spherical particles and filamentous nanoworms, with red blood cells (RBCs) suspension in a constricted channel that mimics a stenosed microvessel. Through three-dimensional simulations using the immersed boundary-based Lattice Boltzmann method, the influence of channel geometries, such as the length and ratio of the constriction, on the accumulation of particles is systematically studied. Firstly, we find that the accumulation of spherical particles with 1 µm diameter in the constriction increases with the increases of both the length and ratio of the constriction. This is attributed to the interaction between spheres and RBCs. The RBCs "carry" the spheres and they accumulate inside the constriction together, due to the altered local hydrodynamics induced by the existence of the constriction. Secondly, nanoworms demonstrate higher accumulation than that of spheres inside the constriction, which is associated with the escape of nanoworms from RBC clusters and their accumulation near the wall of main channel. The accumulated near-wall nanoworms will eventually enter the constriction, thus enhancing their concentration inside the constriction. However, an exceptional case occurs in the case of constrictions with large ratio and long length. In such circumstances, the RBCs aggregate together tightly and concentrate at the center of the channel, which makes the nanoworms hardly able to escape from RBC clusters, leading to a similar accumulation of nanoworms and spheres inside the constriction. This study may provide theoretical guidance for the design of nano- and micro-particles for biomedical engineering applications, such as drug delivery systems for patients with stenosed microvessels.
Assuntos
Eritrócitos , Microvasos , Constrição , Constrição Patológica , HumanosRESUMO
Magnetic actuation has emerged as a powerful and versatile mechanism for diverse applications, ranging from soft robotics, biomedical devices to functional metamaterials. This highly interdisciplinary research calls for an easy to use and efficient modeling/simulation platform that can be leveraged by researchers with different backgrounds. Here we present a lattice model for hard-magnetic soft materials by partitioning the elastic deformation energy into lattice stretching and volumetric change, so-called 'magttice'. Magnetic actuation is realized through prescribed nodal forces in magttice. We further implement the model into the framework of a large-scale atomic/molecular massively parallel simulator (LAMMPS) for highly efficient parallel simulations. The magttice is first validated by examining the deformation of ferromagnetic beam structures, and then applied to various smart structures, such as origami plates and magnetic robots. After investigating the static deformation and dynamic motion of a soft robot, the swimming of the magnetic robot in water, like jellyfish's locomotion, is further studied by coupling the magttice and lattice Boltzmann method (LBM). These examples indicate that the proposed magttice model can enable more efficient mechanical modeling and simulation for the rational design of magnetically driven smart structures.