Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404046, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842820

RESUMO

Cobalt carbide (Co2C) possesses high catalytic efficiency Fischer-Tropsch synthesis (FTS), while the products selectivity appears sensitive to crystallography geometry. Since the Anderson-Schulz-Flory (ASF) distribution in FTS is broken through fabricating facetted Co2C nanocrystals, yet the underlying mechanism of Co2C crystallization remains unclarified suffering from sophisticated catalyst composition involving promoter agents. Herein, the synthesis of high-purity single-crystal nanoprisms (Co2C-p) for highly efficient FTS is reported to lower olefins. Through comprehensive microstructure analysis, e.g., high-resolution TEM, in situ TEM and electron diffraction, as well as finite element simulation of gas flow field, for the first time the full roadmap of forming catalytic active cobalt carbides is disclosed, starting from reduction of Co3O4 precursor to CoO intermediate, then carburization into Co2C-s and subsequent ripening growth into Co2C-p. This gas-induced engineering of crystal phase provides a new synthesis strategy, with many new possibilities for precise design of metal-based catalyst for diverse catalytic applications.

2.
Nat Commun ; 15(1): 2159, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461315

RESUMO

CO2 hydrogenation to chemicals and fuels is a significant approach for achieving carbon neutrality. It is essential to rationally design the chemical structure and catalytic active sites towards the development of efficient catalysts. Here we show a Ce-CuZn catalyst with enriched Cu/Zn-OV-Ce active sites fabricated through the atomic-level substitution of Cu and Zn into Ce-MOF precursor. The Ce-CuZn catalyst exhibits a high methanol selectivity of 71.1% and a space-time yield of methanol up to 400.3 g·kgcat-1·h-1 with excellent stability for 170 h at 260 °C, comparable to that of the state-of-the-art CuZnAl catalysts. Controlled experiments and DFT calculations confirm that the incorporation of Cu and Zn into CeO2 with abundant oxygen vacancies can facilitate H2 dissociation energetically and thus improve CO2 hydrogenation over the Ce-CuZn catalyst via formate intermediates. This work offers an atomic-level design strategy for constructing efficient multi-metal catalysts for methanol synthesis through precise control of active sites.

3.
Inorg Chem ; 63(9): 4312-4327, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38354197

RESUMO

It is crucial to eliminate CO emissions using non-noble catalysts. Cu-based catalysts have been widely applied in CO oxidation, but their activity and stability at low temperatures are still challenging. This study reports the preparation and application of an efficient copper-doped ceria electrospun fiber catalyst prepared by a facile electrospinning method. The obtained 10Cu-Ce fiber catalyst achieved complete CO oxidation at a temperature as low as 90 °C. However, a reference 10Cu/Ce catalyst prepared by the impregnation method needed 110 °C to achieve complete CO oxidation under identical reaction conditions. Asymmetric oxygen vacancies (ASOV) at the interface between copper and cerium were constructed, to effectively absorb gas molecules involved in the reaction, leading to the enhanced oxidation of CO. The exceptional ability of the 10Cu-Ce catalyst to adsorb CO is attributed to its unique structure and surface interaction phase Cu+-Ov-Ce3+, as demonstrated by a series of characterizations and DFT calculations. This novel approach of using electrospinning offers a promising technique for developing low-temperature and non-noble metal-based catalysts.

4.
J Environ Sci (China) ; 140: 306-318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331510

RESUMO

The Intergovernmental Panel on Climate Change (IPCC) recognises the pivotal role of renewable energies in the future energy system and the achievement of the zero-emission target. The implementation of renewables should provide major opportunities and enable a more secure and decentralised energy supply system. Renewable fuels provide long-term solutions for the transport sector, particularly for applications where fuels with high energy density are required. In addition, it helps reducing the carbon footprint of these sectors in the long-term. Information on biomass characteristics feedstock is essential for scaling-up gasification from the laboratory to industrial-scale. This review deals with the transformation biogenic residues into a valuable bioenergy carrier like biomethanol as the liquid sunshine based on the combination of modified mature technologies such as gasification with other innovative solutions such as membranes and microchannel reactors. Tar abatement is a critical process in product gas upgrading since tars compromise downstream processes and equipment, for this, membrane technology for upgrading syngas quality is discussed in this paper. Microchannel reactor technology with the design of state-of-the-art multifunctional catalysts provides a path to develop decentralised biomethanol synthesis from biogenic residues. Finally, the development of a process chain for the production of (i) methanol as an intermediate energy carrier, (ii) electricity and (iii) heat for decentralised applications based on biomass feedstock flexible gasification, gas upgrading and methanol synthesis is analysed.


Assuntos
Metanol , Tecnologia , Biomassa , Temperatura Alta , Catálise
5.
Angew Chem Int Ed Engl ; 63(3): e202317669, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38032335

RESUMO

Rational design of low-cost and efficient transition-metal catalysts for low-temperature CO2 activation is significant and poses great challenges. Herein, a strategy via regulating the local electron density of active sites is developed to boost CO2 methanation that normally requires >350 °C for commercial Ni catalysts. An optimal Ni/ZrO2 catalyst affords an excellent low-temperature performance hitherto, with a CO2 conversion of 84.0 %, CH4 selectivity of 98.6 % even at 230 °C and GHSV of 12,000 mL g-1 h-1 for 106 h, reflecting one of the best CO2 methanation performance to date on Ni-based catalysts. Combined a series of in situ spectroscopic characterization studies reveal that re-constructing monoclinic-ZrO2 supported Ni species with abundant oxygen vacancies can facilitate CO2 activation, owing to the enhanced local electron density of Ni induced by the strong metal-support interactions. These findings might be of great aid for construction of robust catalysts with an enhanced performance for CO2 emission abatement and beyond.

7.
RSC Adv ; 13(20): 13592-13603, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37152574

RESUMO

In this study, a novel magnetic bio-adsorbent was synthesized by modifying cotton linter (CL) cellulose with deep eutectic solvents (DESs) and Fe3O4 magnetic nanoparticles. The adsorption capacity of CL, Fe3O4/CL, Fe3O4/CL-oxidation, and Fe3O4/CL-DES for Cu2+ was 11.0, 66.1, 85.7, and 93.1 mg g-1, respectively, under the optimal adsorption conditions of an initial pH value of 6.0, stirring rate of 300 rpm, and a temperature of 30 °C. The presence of Fe3O4 nanoparticles increased the proportion of hydroxyl groups and thus improved the ion-exchange ability of Cu2+. The dissolution of DES significantly decreased fiber crystallinity and increased the number of hydroxyl group (amorphous regions increased), thus improving the chelation reaction of Cu2+, which was favorable for surface adsorption. In addition, we used the Langmuir and Freundlich isothermal models to simulate the adsorption behavior of Fe3O4/CL-DES, and the results indicated that Cu2+ follows a Freundlich isotherm model of multilayer adsorption. The fitting of the adsorption kinetics model indicated that the adsorption process involves multiple adsorption mechanisms and can be described by a quasi-second-order model. These results provide a potential method for the preparation of high-efficiency adsorbents from low-value cotton linter, which has broad application prospects in wastewater treatment.

8.
Small ; 19(18): e2208238, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36734211

RESUMO

The acid-base properties of supports have an enormous impact on catalytic reactions to regulate the selectivity and activity of supported catalysts. Herein, a train of Pd-X-UiO-66 (X = NO2 , NH2 , and CH3 ) catalysts with different acidity/alkalinity functional groups and encapsulated Pd(II) species is first developed, whose activities in dimethyl carbonate (DMC) catalysis are then investigated in details. Thereinto, the Pd-NO2 -UiO-66 catalyst with acidity functionalization exhibits the best catalytic behavior: the DMC selectivity stemmed from methyl nitrite (MN) is up to 68%, the conversion of CO is 73.4%. The obtained experimental results demonstrate that the NO2 group not only affected the interaction between X-UiO-66 and Pd(II) active sites but also play an indispensable role in the adsorption and activation of MN and CO, which remarkably promote the formation of the COOCH3 * intermediate and DMC product.

9.
Chem Commun (Camb) ; 59(19): 2711-2725, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752126

RESUMO

Ethylene glycol (EG), a useful chemical raw material, has been widely applied in many aspects of modern society. The conventional preparation of ethylene glycol mainly uses the petroleum route at high temperatures and pressure. More and more approaches have been developed to synthesize EG from CO2 and its derivatives under mild conditions. In this review, the ambient synthesis of EG from thermocatalysis, photocatalysis, and electrocatalysis is highlighted. The coal-to-ethylene glycol technology, one of the typical thermal catalysis routes for EG preparation, is relatively mature. However, it still faces some problems to be solved in industrialization. The recent progress in the development of coal-to-ethylene glycol technology is introduced. The main focus is on how to realize the preparation of EG under mild conditions. The strategies include doping promoters, modification of supports, design of catalysts with special structures, etc. Furthermore, the emerging technological progress of photocatalytic and electrocatalytic ethylene glycol synthesis under ambient conditions is introduced. Compared with the thermal catalytic reaction, the reaction conditions are milder. However, there are still many problems in large-scale production. Finally, we propose future development issues and related prospects for the ambient synthesis of EG using different catalytic routes.

10.
Sci Bull (Beijing) ; 67(20): 2124-2138, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36546112

RESUMO

Ammonia, primarily made with Haber-Bosch process developed in 1909 and winning two Nobel prizes, is a promising noncarbon fuel for preventing global warming of 1.5 °C above pre-industrial levels. However, the undesired characteristics of the process, including high carbon footprint, necessitate alternative ammonia synthesis methods, and among them is chemical looping ammonia production (CLAP) that uses nitrogen carrier materials and operates at atmospheric pressure with high product selectivity and energy efficiency. To date, neither a systematic review nor a perspective in nitrogen carriers and CLAP has been reported in the critical area. Thus, this work not only assesses the previous results of CLAP but also provides perspectives towards the future of CLAP. It classifies, characterizes, and holistically analyzes the fundamentally different CLAP pathways and discusses the ways of further improving the CLAP performance with the assistance of plasma technology and artificial intelligence (AI).


Assuntos
Amônia , Inteligência Artificial , Nitrogênio/química
11.
Front Chem ; 10: 993691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118307

RESUMO

The methane dry reforming reaction can simultaneously convert two greenhouse gases (CH4 and CO2), which has significantly environmental and economic benefits. Nickel-based catalysts have been widely used in methane dry reforming in past decade due to their low cost and high activity. However, the sintering and coke deposition of catalysts severely limit their industrial applications. In this paper, three Ni/SiO2 catalysts prepared by different methods were systematically studied, and the samples obtained by the ammonia evaporation method exhibited excellent catalytic performance. The characterization results such as H2-TPR, XPS and TEM confirmed that the excellent performance was mainly attributed to the catalyst with smaller Ni particles, stronger metal-support interactions, and abundant Ni-O-Si units on the catalyst surface. The anti-sintering/-coking properties of the catalyst were significantly improved. However, the Ni/SiO2-IM catalyst prepared by impregnation method had uneven distribution of nickel species and large particles, and weak metal-support interactions, showing poor catalytic performance in methane dry reforming. Since the nickel species were encapsulated by the SiO4 tetrahedral network, the Ni/SiO2-SG catalyst prepared by sol-gel method could not expose more effective active sites even if the nickel species were uniformly dispersed, resulting in poor dry reforming performance. This study provides guidance for the preparation of novel anti-sintering/-coking nickel-based catalysts.

12.
Front Chem ; 10: 961355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991607

RESUMO

The rapid economic and societal development have led to unprecedented energy demand and consumption resulting in the harmful emission of pollutants. Hence, the conversion of greenhouse gases into valuable chemicals and fuels has become an urgent challenge for the scientific community. In recent decades, perovskite-type mixed oxide-based catalysts have attracted significant attention as efficient CO2 conversion catalysts due to the characteristics of both reversible oxygen storage capacity and stable structure compared to traditional oxide-supported catalysts. In this review, we hand over a comprehensive overview of the research for CO2 conversion by these emerging perovskite-type mixed oxide-based catalysts. Three main CO2 conversions, namely reverse water gas shift reaction, CO2 methanation, and CO2 reforming of methane have been introduced over perovskite-type mixed oxide-based catalysts and their reaction mechanisms. Different approaches for promoting activity and resisting carbon deposition have also been discussed, involving increased oxygen vacancies, enhanced dispersion of active metal, and fine-tuning strong metal-support interactions. Finally, the current challenges are mooted, and we have proposed future research prospects in this field to inspire more sensational breakthroughs in the material and environment fields.

13.
Langmuir ; 38(12): 3694-3710, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35285652

RESUMO

Using the dispersion-corrected density functional theory (DFT-D3) method, we systematically studied the adsorption of 15 kinds of transition-metal (TM) clusters on pristine graphene (Gr) and N-doped graphene (N-Gr). It has been found that TMn (n = 1-4) clusters adsorbed on the N-Gr surface are much stronger than those on the pristine Gr surface, while 3d series clusters present similar geometries on Gr and N-Gr surfaces. The most preferred sites of TMs migrate from hollow to bridge to the top site on the Gr surface along the d series in the periodic table, while the preferred sites of TMs migrate in a much more complex manner on the N-Gr surface. It has also been found that charge transfer decreases along the d series for adsorbed clusters on both surfaces, but adsorbed clusters present less charge transfer on the N-Gr surface than on the Gr surface. What is more interesting is that some TM (Tc, Ru, and Re) clusters change the growth mechanism from the three-dimensional (3D) growth mode on the Gr surface to the two-dimensional (2D) growth mode on the N-Gr surface. At last, it has been found that adsorbed clusters are more dispersed on the N-Gr surface than on the pristine Gr surface due to growth and average aggregation energies.

15.
Small Methods ; 5(5): e2001250, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34928103

RESUMO

It is desirable for a sustainable society that the production and utilization of renewable materials are net-zero in terms of carbon emissions. Carbon materials with emerging applications in CO2 utilization, renewable energy storage and conversion, and biomedicine have attracted much attention both academically and industrially. However, the preparation process of some new carbon materials suffers from energy consumption and environmental pollution issues. Therefore, the development of low-cost, scalable, industrially and economically attractive, sustainable carbon material preparation methods are required. In this regard, the use of biomass and its derivatives as a precursor of carbon materials is a major feature of sustainability. Recent advances in the synthetic strategy of sustainable carbon materials and their emerging applications are summarized in this short review. Emphasis is made on the discussion of the original intentions and various sustainable strategies for producing sustainable carbon materials. This review provides basic insights and significant guidelines for the further design of sustainable carbon materials and their emerging applications in catalysis and the biomedical field.

16.
Nanomaterials (Basel) ; 11(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34947586

RESUMO

Boron (B) promoter modified Cu/SiO2 bifunctional catalysts were synthesized by sol-gel method and used to produce ethylene glycol (EG) and ethanol (EtOH) through efficient hydrogenation of dimethyl oxalate (DMO). Experimental results showed that boron promoter could significantly improve the catalytic performance by improving the structural characteristics of the Cu/SiO2 catalysts. The optimized 2B-Cu/SiO2 catalyst exhibited excellent low temperature catalytic activity and long-term stability, maintaining the average EG selectivity (Sel.EG) of 95% at 190 °C, and maintaining the average EtOH selectivity (Sel.EtOH) of 88% at 260 °C, with no decrease even after reaction of 150 h, respectively. Characterization results revealed that doping with boron promoter could significantly increase the copper dispersion, enhance the metal-support interaction, maintain suitable Cu+/(Cu+ + Cu0) ratio, and diminish metallic copper particles during the hydrogenation of DMO. Thus, this work introduced a bifunctional boron promoter, which could not only improve the copper dispersion, reduce the formation of bulk copper oxide, but also properly enhance the acidity of the sample surface, so that the Cu/SiO2 sample could exhibit superior EG selectivity at low temperature, as well as improving the EtOH selectivity at high temperature.

17.
Chem Asian J ; 16(6): 678-689, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453068

RESUMO

CO2 is the main component of greenhouse gases and also an important carbon source. The hydrogenation of CO2 to methane using Ni-based catalysts can not only alleviate CO2 emissions but also obtain useful fuels. However, Ni-based catalysts face one major problem of the sintering of Ni nanoparticles in the process of CO2 methanation. Thus, this work has synthesized a series of efficient and robust nickel silicate catalysts (NiPS-X) with different nickel content derived from nickel phyllosilicate by the hydrothermal method. It was found that the Ni loading plays a critical role in the structure and catalytic performance of the NiPS-X catalysts. The catalytic performance gradually increases with the increase of Ni loading. In particular, the highly dispersed NiPS-1.6 catalyst with a high Ni loading of 34.3 wt% could obtain the CO2 conversion greater than 80%, and the methane selectivity was close to 100% for 48 h at 330 °C and the GHSV of 40,000 mL g-1 h-1 . The excellent catalytic property can be assigned to the high dispersion of Ni nanoparticles and the strong interaction between the active component and the carrier, which is derived from a unique layered silicate structure with lots of nickel phyllosilicate and a large number of Lewis acid sites.

18.
Small ; 17(9): e1906250, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32406190

RESUMO

Heterogeneous hydrogenation reactions are of great importance for chemical upgrading and synthesis, but still face the challenges of controlling selectivity and long-term stability. To improve the catalytic performance, many hydrogenation reactions utilize special yolk/core-shell nanoreactors (YCSNs) with unique architectures and advantageous properties. This work presents the developmental and technological challenges in the preparation of YCSNs that are potentially useful for hydrogenation reactions, and provides a summary of the properties of these materials. The work also addresses the scientific challenges in applications of these YCSNs in various gas and liquid-phase hydrogenation reactions. The catalyst structures, catalytic performance, structure-performance relationships, reaction mechanisms, and unsolved problems are discussed too. Also, a brief outlook and opportunities for future research in this field are presented. This work on the advancements in YCSNs might inspire the creation of new materials with desired structures for achieving maximal hydrogenation performances.


Assuntos
Nanotecnologia , Catálise , Hidrogenação
19.
Angew Chem Int Ed Engl ; 59(42): 18374-18379, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32588534

RESUMO

Nanoreactors with hollow structures have attracted great interest in catalysis research due to their void-confinement effects. However, the challenge in unambiguously unraveling these confinement effects is to decouple them from other factors affecting catalysis. Here, we synthesize a pair of hollow carbon sphere (HCS) nanoreactors with presynthesized PdCu nanoparticles encapsulated inside of HCS (PdCu@HCS) and supported outside of HCS (PdCu/HCS), respectively, while keeping other structural features the same. Based on the two comparative nanoreactors, void-confinement effects in liquid-phase hydrogenation are investigated in a two-chamber reactor. It is found that hydrogenations over PdCu@HCS are shape-selective catalysis, can be accelerated (accumulation of reactants), decelerated (mass transfer limitation), and even inhibited (molecular-sieving effect); conversion of the intermediate in the void space can be further promoted. Using this principle, a specific imine is selectively produced. This work provides a proof of concept for fundamental catalytic action of the hollow nanoreactors.

20.
J Environ Sci (China) ; 92: 106-117, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430113

RESUMO

Direct synthesis of dimethyl ether (DME) by CO2 hydrogenation has been investigated over three hybrid catalysts prepared by different methods: co-precipitation, sol-gel, and solid grinding to produce mixed Cu, ZnO, ZrO2 catalysts that were physically mixed with a commercial ferrierite (FER) zeolite. The catalysts were characterized by N2 physisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature programmed desorption of CO2 (CO2-TPD), temperature programmed desorption of NH3 (NH3-TPD), and temperature programmed H2 reduction (H2-TPR). The results demonstrate that smaller CuO and Cu crystallite sizes resulting in better dispersion of the active phases, higher surface area, and lower reduction temperature are all favorable for catalytic activity. The reaction mechanism has been studied using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Methanol appears to be formed via the bidentate-formate (b-HCOO) species undergoing stepwise hydrogenation, while DME formation occurs from methanol dehydration and reaction of two surface methoxy groups.


Assuntos
Dióxido de Carbono , Catálise , Hidrogenação , Éteres Metílicos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA