Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 728-734, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621876

RESUMO

Mesona chinensis is a common medicinal and edible plant in the Lingnan region of China, which has extensive pharmacological activity. However, the study of its chemical constituents is not sufficient. In this study, a variety of modern chromatographic separation techniques were used to isolate two compounds from 95% ethanol extract of the grass parts of M. chinensis. Their absolute configurations were determined by ultraviolet spectroscopy(UV), infrared spectroscopy(IR), high resolution mass spectrometry(HR-ESI-MS), 1D and 2D nuclear magnetic resonance(1D NMR and 2D NMR), and single-crystal X-ray diffraction(SC-XRD). Specifically, they were two new benzoyl-sesquiterpenes and named mesonanol A and mesonanol B, respectively. The results of the pharmacological activity evaluation showed that neither of the two new compounds showed obvious antiviral and anti-inflammatory activities.


Assuntos
Lamiaceae , Sesquiterpenos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Espectrofotometria Infravermelho , Estrutura Molecular
2.
Fitoterapia ; 175: 105982, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685512

RESUMO

A phytochemical investigation on the buds of edible medicinal plant, Eugenia carvophyllata, led to the discovery of seven new compounds, caryophones A-G (1-7), along with two biogenetically-related known ones, 2-methoxy-7-methyl-1,4-naphthalenedione (8) and eugenol (9). Compounds 1-3 represent the first examples of C-5-C-1' connected naphthoquinone-monoterpene adducts with a new carbon skeleton. Compounds 4-7 are a class of novel neolignans with unusual linkage patterns, in which the C-9 position of one phenylpropene unit coupled with the aromatic core of another phenylpropene unit. The chemical structures of the new compounds were determined based on extensive spectroscopic analysis, X-ray diffraction crystallography, and quantum-chemical calculation. Among the isolates, compounds (-)-2, 3, 6, and 9 showed significant in vitro inhibitory activities against respiratory syncytial virus (RSV)-induced nitric oxide (NO) production in RAW264.7 cells.

3.
J Asian Nat Prod Res ; 26(1): 38-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190257

RESUMO

Guided by 1H NMR spectroscopic experiments using the characteristic enol proton signals as probes, three pairs of new tautomeric cinnamoylphloroglucinol-monoterpene adducts (1-3) were isolated from the buds of Cleistocalyx operculatus. Their structures with absolute configurations were established by spectroscopic analysis, modified Mosher's method, and quantum chemical electronic circular dichroism calculation. Compounds 1-3 represent a novel class of cinnamoylphloroglucinol-monoterpene adducts featuring an unusual C-4-C-1' linkage between 2,2,4-trimethyl-cinnamyl-ß-triketone and modified linear monoterpenoid motifs. Notably, compounds 1-3 exhibited significant in vitro antiviral activity against respiratory syncytial virus (RSV).


Assuntos
Syzygium , Syzygium/química , Monoterpenos/química , Espectroscopia de Ressonância Magnética , Antivirais/química , Estrutura Molecular
4.
Chemistry ; 30(8): e202303519, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38018776

RESUMO

Three unusual ajmaline-macroline type bisindole alkaloids, alsmaphylines A-C, together with their postulated biogenetic precursors, were isolated from the stem barks and leaves of Alstonia macrophylla via the building blocks-based molecular network (BBMN) strategy. Alsmaphyline A represents a rare ajmaline-macroline type bisindole alkaloid with an S-shape polycyclic ring system. Alsmaphylines B and C are two novel ajmaline-macroline type bisindole alkaloids with N-1-C-21' linkages, and the former possesses an unconventional stacked conformation due to the presence of intramolecular noncovalent interactions. The chemical structures including absolute configurations of alsmaphylines A-C were established by comprehensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, and single-crystal X-ray crystallography. In addition, a plausible biosynthetic pathway of these bisindole alkaloids as well as their ability to promote the protein synthesis on HT22 cells were discussed.


Assuntos
Alcaloides , Alstonia , Oxindóis , Alstonia/química , Ajmalina , Alcaloides Indólicos/química , Estrutura Molecular , Alcaloides/química
5.
Phytochemistry ; 217: 113902, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907158

RESUMO

One undescribed homologous furanochromanone (1) featuring a 6/6/5/3 tetracyclic skeleton and four highly oxidized pyranochromanones (2-5), along with a set of four pyranochromanone stereoisomers [(±)-6a and (±)-6b], were isolated from the leaves of Calophyllum membranaceum Gardn. Et Champ. Their structures were elucidated by using spectroscopic data, Snatzke's method, quantum-chemical calculations, and X-ray crystallographic analysis. The correlation of characteristic Cotton effects and specific chemical shifts with C-3 configuration provided a convenient approach to assign the C-3 configuration of 2,3-dimethylchromanones. The stereochemical assignments of 3-OH substituted pyranochromanones by quantum-based NMR methods following single/double MTPA derivatization were consistent with the ECD/NMR prediction, which verified the feasibility and reliability of the proposed empirical rule. The underlying mechanism was further clarified by conformational and molecular orbital analyses. Moreover, biological evaluation and binding assays demonstrated that compound 3 (KD = 0.45 µM) tightly binds to the TLR4-MD2 target, thereby inhibiting the TLR4/MyD88-dependent and -independent signal pathways. This study provides the first evidence that Calophyllum chromanones are a novel structural type of TLR4 inhibitors, exerting their anti-inflammatory effects by disrupting the binding between TLR4 and MD2.


Assuntos
Calophyllum , Calophyllum/química , Estrutura Molecular , Reprodutibilidade dos Testes , Receptor 4 Toll-Like , Anti-Inflamatórios
6.
Angew Chem Int Ed Engl ; 62(50): e202312568, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37848394

RESUMO

A synthetic strategy based on biogenetic building blocks for the collective and divergent biomimetic synthesis of cleistoperlones A-F, a cinnamoylphloroglucinol collection discovered from Cleistocalyx operculatus, has been developed. These syntheses proceeded successfully in only six to seven steps starting from commercially available 1,3,5-benzenetriol and involving oxidative activation of stable biogenetic building blocks as a crucial step. Key features of the syntheses include a unique Michael addition/ketalization/1,6-addition/enol-keto tautomerism cascade reaction for the construction of the dihydropyrano[3,2-d]xanthene tetracyclic core of cleistoperlones A and B, and a rare inverse-electron-demand hetero-Diels-Alder cycloaddition for the establishment of benzopyran ring in cleistoperlones D-F. Moreover, cleistoperlone A exhibited significant antiviral activity against acyclovir-resistant strains of herpes simplex virus type 1 (HSV-1/Blue and HSV-1/153).


Assuntos
Syzygium , Biomimética , Estereoisomerismo , Reação de Cicloadição , Antivirais/farmacologia
7.
Fitoterapia ; 171: 105705, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852389

RESUMO

Seven new secoiridoid glycosides (1-7), together with a known analogue (8), were isolated from the fruits of Ligustrum lucidum. Their structures with absolute configurations were determined by HR-ESI-MS, 1D and 2D NMR, and electronic circular dichroism (ECD) spectroscopic analysis, as well as biogenetic consideration. Compounds 1 and 2 are the first examples of secoiridoid glycoside dimers featuring a rare rearranged oleoside-type secoiridoid moiety, and compounds 3-7 represent a new class of oleoside-type secoiridoid glycosides with unusual stereochemistry at C-1 position. A plausible biosynthetic pathway for this group of unusual secoiridoid glycosides was also proposed herein. In addition, the isolates were evaluated for their in vitro anti-inflammatory activity, and all tested compounds exhibited modest inhibitory effects against nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages.


Assuntos
Glicosídeos Iridoides , Ligustrum , Glicosídeos Iridoides/farmacologia , Glicosídeos Iridoides/química , Ligustrum/química , Estrutura Molecular , Frutas/química , Anti-Inflamatórios/farmacologia , Glicosídeos/farmacologia , Glicosídeos/análise
8.
Phytochemistry ; 216: 113869, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739201

RESUMO

Twelve undescribed limonoids, meliazedarines J-U (1-12), along with a known one, were isolated from the roots of Melia azedarach. Their structures were elucidated by extensive spectroscopic investigations, X-ray diffraction analyses, and ECD calculations. Compounds 1-8 were identified as ring intact limonoids, while compounds 9-12 were established as ring C-seco ones. The anti-inflammatory potential of compounds 1-4, 6, 8, 9, and 11-13 was evaluated on macrophages. Compounds 1, 3, 4, 6, and 9 significantly suppressed nitric oxide production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, among them compound 3 showed the best inhibitory effect with an IC50 value of 7.07 ± 0.48 µΜ. Furthermore, compound 3 effectively reduced interleukin-1ß secretion in LPS plus nigericin-induced THP-1 macrophages by inhibiting NLRP3 inflammasome activation. The results strongly suggested that limonoids from the roots of M. azedarach might be candidates for treating inflammation-related diseases.


Assuntos
Limoninas , Melia azedarach , Melia azedarach/química , Limoninas/farmacologia , Limoninas/química , Lipopolissacarídeos/farmacologia , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
9.
Acta Pharmacol Sin ; 44(12): 2358-2375, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37550526

RESUMO

Atherosclerosis, one of the life-threatening cardiovascular diseases (CVDs), has been demonstrated to be a chronic inflammatory disease, and inflammatory and immune processes are involved in the origin and development of the disease. Toll-like receptors (TLRs), a class of pattern recognition receptors that trigger innate immune responses by identifying pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), regulate numerous acute and chronic inflammatory diseases. Recent studies reveal that TLRs have a vital role in the occurrence and development of atherosclerosis, including the initiation of endothelial dysfunction, interaction of various immune cells, and activation of a number of other inflammatory pathways. We herein summarize some other inflammatory signaling pathways, protein molecules, and cellular responses associated with TLRs, such as NLRP3, Nrf2, PCSK9, autophagy, pyroptosis and necroptosis, which are also involved in the development of AS. Targeting TLRs and their regulated inflammatory events could be a promising new strategy for the treatment of atherosclerotic CVDs. Novel drugs that exert therapeutic effects on AS through TLRs and their related pathways are increasingly being developed. In this article, we comprehensively review the current knowledge of TLR signaling pathways in atherosclerosis and actively seek potential therapeutic strategies using TLRs as a breakthrough point in the prevention and therapy of atherosclerosis.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/metabolismo , Receptores Toll-Like/metabolismo , Transdução de Sinais/fisiologia , Aterosclerose/metabolismo
11.
Phytochemistry ; 211: 113699, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105351

RESUMO

(+) and (-)-Eugenilones A-K, 11 pairs of undescribed enantiomeric sesquiterpenoids, together with three undescribed biogenetically related members eugenilones L-N, were discovered from the fruits of Eugenia uniflora Linn. (Myrtaceae). Structurally, eugenilones A-D were four caged sesquiterpenoids featuring 9,10-dioxatricyclo [6.2.2.02,7]dodecane, 11-oxatricyclo [5.3.1.03,8]undecane, and tricyclo [4.4.0.02,8]decane cores, respectively. Eugenilones E-K were eudesmane-type sesquiterpenoids, while eugenilones L-N were epoxy germacrane-type sesquiterpenoids. Notably, eugenilones A-K were efficiently resolved by chiral HPLC to give 11 pairs of optically pure enantiomers. The structures and absolute configurations of eugenilones A-N were determined through spectroscopic analyses, X-ray crystallography, and ECD calculations. The putative biosynthetic pathways for these undescribed isolates were proposed. Moreover, eugenilones A and E exhibited significant anti-inflammatory effects by inhibiting LPS-stimulated NO overproduction in RAW264.7 cells (IC50 values of 4.89 ± 0.37 µM and 20.89 ± 1.49 µM, respectively) and TNF-α-induced NF-κB activation in HEK293 cells (IC50 values of 10.97 ± 1.03 µM and 28.63 ± 1.59 µM, respectively).


Assuntos
Eugenia , Sesquiterpenos , Animais , Camundongos , Humanos , Frutas , Células HEK293 , Estrutura Molecular , Células RAW 264.7 , Sesquiterpenos/farmacologia , Sesquiterpenos/química
12.
Life Sci ; 324: 121715, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37100377

RESUMO

AIMS: We aimed to evaluate the effect of periplocin on inhibiting hepatocellular carcinoma (HCC) and further determine its mechanisms. MAIN METHODS: Cytotoxic activity of periplocin against HCC cells was tested by CCK-8 and colony formation assays. The antitumor effects of periplocin were evaluated in human HCC SK-HEP-1 xenograft and murine HCC Hepa 1-6 allograft mouse models. Flow cytometry was used to measure cell cycle distribution, apopotosis, and the number of myeloid-derived suppressor cells (MDSCs). Hoechst 33258 dye was applied to observe the nuclear morphology. Network pharmacology was performed to predict possible signaling pathways. Drug affinity responsive target stability assay (DARTS) was used to evaluate AKT binding of periplocin. Western blotting, immunohistochemistry, and immunofluorescence were used to examine the protein expression levels. KEY FINDING: Periplocin inhibited cell viability with IC50 values from 50 nM to 300 nM in human HCC cells. Periplocin disrupted cell cycle distribution and promoted cell apoptosis. Moreover, AKT was predicted as the target of periplocin by network pharmacology, which was confirmed by that AKT/NF-κB signaling was inhibited in periplocin-treated HCC cells. Periplocin also inhibited the expression of CXCL1 and CXCL3, leading to decreased accumulation of MDSCs in HCC tumors. SIGNIFICANCE: These findings reveal the function of periplocin in inhibiting HCC progression by G2/M arrest, apoptosis and suppression of MDSCs accumulation through blockade of the AKT/NF-κB pathway. Our study further suggests that periplocin has the potential to be developed as an effective therapeutic agent for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Supressoras Mieloides , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hepáticas/patologia , Células Supressoras Mieloides/metabolismo , Proliferação de Células , Apoptose , Linhagem Celular Tumoral
13.
Chem Biodivers ; 20(4): e202300234, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36942510

RESUMO

Six new phloroglucinol derivatives, xanchryones I-N (1-6), were isolated from the leaves of Xanthostemon chrysanthus. Compounds 1-6 are unusual phloroglucinol-amino acid hybrids constructed through C2 -N and O-C1 ' bonds forming a peculiar oxazole ring. The structures and absolute configurations of compounds 1-6 were determined by MS, NMR, and single-crystal X-ray diffraction. Moreover, the anti-inflammatory and antibacterial activities of these compounds were evaluated.


Assuntos
Myrtaceae , Floroglucinol , Estrutura Molecular , Floroglucinol/química , Aminoácidos/análise , Myrtaceae/química , Antibacterianos/química , Folhas de Planta/química
14.
J Ethnopharmacol ; 305: 116093, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603785

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Allergic contact dermatitis (ACD) is a common allergic inflammatory disease that is concomitant with skin swelling, redness, dry itching, and relapses. Prinsepia utilis Royle, a Chinese and Indian folk medicine, is rich in polyphenols with potential anti-inflammatory and skin-protective activities. However, the underlying mechanism of P. utilis leaf (PUL) in the treatment of ACD and its functional basis remains unclear. AIM OF THE STUDY: This study is aimed to explore and reveal the active substances and mechanism of PUL against ACD. MATERIALS AND METHODS: Hyaluronidase inhibitory assay and fluorescein isothiocyanate (FITC)-induced ACD mouse model were performed to assess the antiallergic effects of PUL in vitro and in vivo. Different solvents were applied to obtain multiple PUL extracts. The extracts were further tested for total phenolic content (TPC) and total flavonoid content (TFC) by using spectrophotometric assays. Polyphenolic profiles were analyzed by using ultrahigh-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), and a simultaneous quantification method was established using UPLC-QTrap-MS/MS through multiple reaction monitoring (MRM) and applied to analyze the pharmacokinetics of the multiple major polyphenols of PUL in mice. RESULTS: The water extract of PUL with the highest TPC/TFC exhibited the strongest antihyaluronidase effect (IC50 = 231.93 µg/mL). In vivo assays indicated that the oral administration of PUL water extract dose-dependently attenuated ACD-like symptoms by decreased interleukin (IL)-4, IL-5, IL-13, IL-33, thymic stromal lymphopoietin, and IgE production, suppressed eosinophil and basophil secretion, and increasing the expression of tight junction (TJ) proteins (claudin-1 [CLDN-1] and occludin). Concomitantly, UPLC-QTOF-MS/MS analysis enabled the identification of 60 polyphenols and the pharmacokinetic parameters of seven quantified constituents of PUL were characterized. Four compounds, trans-p-coumaric acid 4-O-ß-D-glucopyranoside (11), vicenin-2 (21), isoschaftoside (31), and kaempferol 3-O-(2″,6″-di-O-α-L-rhamnopyransoyl)-ß-D-glucopyranoside (38) which displayed satisfactory pharmacokinetic features, were considered as potential effective substances in PUL. CONCLUSIONS: PUL water extract ameliorated the allergic inflammation of ACD by repairing the epithelial barrier and alleviating Th2-type allergic inflammation. The anti-allergic effect of PUL is closely related to its phenolic substances, and compounds 11, 21, 31, and 38 were the active substances of PUL. It revealed that P. utilis could be developed as a new source of antiallergic agents for ACD therapy.


Assuntos
Dermatite Alérgica de Contato , Medicamentos de Ervas Chinesas , Rosaceae , Camundongos , Animais , Espectrometria de Massas em Tandem , Quimiometria , Cromatografia Líquida , Dermatite Alérgica de Contato/tratamento farmacológico , Inflamação/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
15.
Chem Biodivers ; 20(2): e202201111, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36546830

RESUMO

Leptosperols C-G (1-5), five new phenylpropanoyl phloroglucinol derivatives were isolated from the leaves of Leptospermum scoparium. Compounds 1-3 are phenylpropanoyl phloroglucinol-sesquiterpene adducts with new carbon skeletons. Their structures with absolute configurations were elucidated by detailed spectroscopic analyses, single-crystal X-ray diffraction, and electronic circular dichroism (ECD) calculation. Compounds 2 and 3 exhibited moderate anti-inflammatory activity in zebrafish acute inflammatory models.


Assuntos
Leptospermum , Floroglucinol , Animais , Leptospermum/química , Estrutura Molecular , Floroglucinol/química , Peixe-Zebra , Cristalografia por Raios X
16.
Nat Prod Res ; 37(3): 404-410, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34507510

RESUMO

Bixasteroid (1), one new steroid together with five known compounds (2-6), were isolated from the ethyl acetate fraction of ethanol extract of Bixa orellana fruits. All of these known compounds were isolated from the plant for the first time. Their structures were elucidated on the basis of spectroscopic analysis, and the absolute configuration of compound 1 was determined by X-ray crystallographic data analysis as well as by the quantum chemical ECD calculations. All the isolated compounds were tested for their anti-inflammatory activities. Compounds 1 and 2 showed inhibiting NO release activities in LPS-induced RAW 264.7 macrophages with the IC50 values of 4.72 ± 0.28 and 5.48 ± 1.48 µM, respectively.


Assuntos
Bixaceae , Frutas , Bixaceae/química , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Macrófagos
17.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234715

RESUMO

Natural products continue to be a valuable source of active metabolites; however, researchers of natural products are mostly focused on the biological effects, and their chemical utility has been less explored. Furthermore, low throughput is a bottleneck for classical natural product research. In this work, a new offline HPLC/CC/SCD (high performance liquid chromatography followed by co-crystallization and single crystal diffraction) workflow was developed that greatly expedites the discovery of active compounds from crude natural product extracts. The photoactive total alkaloids of the herbal medicine Coptidis rhizome were firstly separated by HPLC, and the individual peaks were collected. A suitable coformer was screened by adding it to the individual peak solution and observing the precipitation, which was then redissolved and used for co-crystallization. Seven new co-crystals were obtained, and all the single crystals were subjected to X-ray diffraction analysis. The molecular structures of seven alkaloids from milligrams of crude extract were resolved within three days. NDS greatly decreases the required crystallization amounts of alkaloids to the nanoscale and enables rapid stoichiometric inclusion of all the major alkaloids with full occupancy, typically without disorder, affording well-refined structures. It is noteworthy that anomalous scattering by the coformer sulfur atoms enables reliable assignment of absolute configuration of stereogenic centers. Moreover, the identified alkaloids were firstly found to be photocatalysts for the green synthesis of benzimidazoles. This study demonstrates a new and green phytochemical workflow that can greatly accelerate natural product discovery from complex samples.


Assuntos
Alcaloides , Alcaloides de Berberina , Produtos Biológicos , Medicamentos de Ervas Chinesas , Alcaloides/química , Benzimidazóis/análise , Alcaloides de Berberina/análise , Produtos Biológicos/química , Cromatografia Líquida de Alta Pressão/métodos , Misturas Complexas , Medicamentos de Ervas Chinesas/química , Rizoma/química , Enxofre/análise
18.
J Agric Food Chem ; 70(38): 11944-11957, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36120893

RESUMO

Dietary saponins have the potential to ameliorate atherosclerosis (AS). Gypenosides of Gynostemma pentaphyllum (GPs) have been used as functional foods to exhibit antiatherosclerotic activity. The present study aimed to explore the protective effect, underlying mechanism and active substances of GPs on AS in vivo and in vitro. Results demonstrated GPs administration reduced the serum concentrations of TC and LDL-C, upregulated the plasma HDL-C content, inhibited the secretion of ICAM-1, VCAM-1, and MCP-1, and alleviated vascular lesions in VitD3 plus high cholesterol diet-induced AS rats as well as reduced adhesion factors levels in ox-LDL-stimulated HUVECs, which was potentially associated with suppressing PCSK9/LOX-1 pathway. Further activity-guided phytochemical investigation of GPs led to the identification of five new dammarane-type glycosides (1-5) and ten known analogs (6-15). Bioassay evaluation showed compounds 1, 6, 7, 12, 13, and 14 observably reduced the expressions of PCSK9 and LOX-1, as well as the secretion of adhesion factors in injured HUVECs. Molecular docking experiments suggested that the active saponins of GPs might bind to the allosteric pocket of PCSK9 located at the catalytic and C-terminal domains, and 2α-OH-protopanaxadiol-type gypenosides might exert a higher affinity for an allosteric binding site on PCSK9 by hydrogen-bond interaction with ARG-458. These findings provide new insights into the potential nutraceutical application of GPs and their bioactive compounds in the prevention and discovery of novel therapeutic strategies for AS.


Assuntos
Aterosclerose , Saponinas , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , LDL-Colesterol , Gynostemma/química , Hidrogênio , Molécula 1 de Adesão Intercelular , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pró-Proteína Convertase 9 , Ratos , Saponinas/química , Receptores Depuradores Classe E , Molécula 1 de Adesão de Célula Vascular
19.
EMBO Rep ; 23(10): e54543, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35993189

RESUMO

Regulation of mRNA translation is essential for brain development and function. Translation elongation factor eEF2 acts as a molecular hub orchestrating various synaptic signals to protein synthesis control and participates in hippocampus-dependent cognitive functions. However, whether eEF2 regulates other behaviors in different brain regions has been unknown. Here, we construct a line of Eef2 heterozygous (HET) mice, which show a reduction in eEF2 and protein synthesis mainly in excitatory neurons of the prefrontal cortex. The mice also show lower spine density, reduced excitability, and AMPAR-mediated synaptic transmission in pyramidal neurons of the medial prefrontal cortex (mPFC). While HET mice exhibit normal learning and memory, they show defective social behavior and elevated anxiety. Knockdown of Eef2 in excitatory neurons of the mPFC specifically is sufficient to impair social novelty preference. Either chemogenetic activation of excitatory neurons in the mPFC or mPFC local infusion of the AMPAR potentiator PF-4778574 corrects the social novelty deficit of HET mice. Collectively, we identify a novel role for eEF2 in promoting prefrontal AMPAR-mediated synaptic transmission underlying social novelty behavior.


Assuntos
Fator 2 de Elongação de Peptídeos/metabolismo , Córtex Pré-Frontal , Transmissão Sináptica , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Fatores de Alongamento de Peptídeos/metabolismo , Córtex Pré-Frontal/fisiologia , Comportamento Social , Transmissão Sináptica/fisiologia
20.
Fitoterapia ; 160: 105229, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35662649

RESUMO

Eighteen stilbenes (1-18), including six previously undescribed ones (1-6), with diverse modification patterns were isolated from the leaves of edible and medicinal plant Cajanus cajan. Among the new isolates, compounds 1-3 were initially obtained as three racemic mixtures, which were further resolved into three pairs of optically pure enantiomers, respectively, by chiral HPLC. Besides, compounds 8, 10, 11, and 18 were obtained from C. cajan for the first time. The chemical structures and absolute configurations of the new stilbenes were elucidated unambiguously on the basis of extensive spectroscopic analyses, single crystal X-ray crystallographic study, and quantum chemical electronic circular dichroism (ECD) calculations. In addition, the in vitro anti-inflammatory activities of all isolated stilbenes were evaluated. Compounds 2, 9, 10, 11, and 14 exerted moderate suppression of nitric oxide (NO) secretion in lipopolysaccharide (LPS)-induced RAW264.7 cells without exhibiting substantial cytotoxicity.


Assuntos
Cajanus , Estilbenos , Anti-Inflamatórios/farmacologia , Cajanus/química , Estrutura Molecular , Folhas de Planta/química , Estilbenos/química , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA