Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754676

RESUMO

Polysaccharides are used in starch-based product formulations to enhance the final quality of food products. This study examined the interaction mechanisms in Ficus pumila polysaccharide (FPP) and wheat starch (WS) gel systems with varying FPP concentrations using linear and nonlinear rheological analysis. Physicochemical structural analyses showed non-covalent FPP-WS interactions, strengthening hydrogen bonding between molecules and promoting water binding and ordered structure generation during WS gel aging. Small amplitude oscillatory shear analyses revealed that elevated FPP concentrations led to increased storage modulus (G'), loss modulus (G"), critical strains (From 29.02 % to 53.32 %) and yield stresses (From 0.94 Pa to 30.97 Pa) in the WS gel system, along with improved resistance to deformation and short-term regeneration. In the nonlinear viscoelastic region, FPP-WS gels shifted from elastic to viscous behavior. Higher FPP concentrations displayed increased energy dissipation, strain hardening (S>0, e3/e1 > 0) and shear thinning (T<0, v3/v1<0). FPP contributes more nonlinearity in the dynamic flow field as showed by the high harmonic ratio, with a larger I3/I1 values overall. This study highlights FPP's potential in starch gel food processing, and offers a theoretical basis for understanding hydrocolloid-starch interactions.


Assuntos
Ficus , Géis , Polissacarídeos , Reologia , Amido , Triticum , Amido/química , Polissacarídeos/química , Ficus/química , Géis/química , Triticum/química , Viscosidade , Resistência ao Cisalhamento
2.
Waste Manag ; 184: 37-51, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795539

RESUMO

Nanobubble water promotes the degradation of difficult-to-degrade organic matter, improves the activity of electron transfer systems during anaerobic digestion, and optimizes the composition of anaerobic microbial communities. Therefore, this study proposes the use of nanobubble water to improve the yield of medium chain carboxylic acids produced from cow manure by chain elongation. The experiment was divided into two stages: the first stage involved the acidification of cow manure to produce volatile acidic fatty acids as electron acceptors, and the second phase involved the addition of lactic acid as an electron donor for the chain elongation. Three experimental groups were established, and air, H2, and N2 nanobubble water were added in the second stage. Equal amounts of deionized water were added in the control group. The results showed that nanobubble water supplemented with air significantly increased the caproic acid concentration to 15.10 g/L, which was 55.03 % greater than that of the control group. The relative abundances of Bacillus and Caproiciproducens, which are involved in chain elongation, and Syntrophomonas, which is involved in electron transfer, increased. The unique ability of air nanobubble water supplemented to break down the cellulose matrix resulted in further decomposition of the recalcitrant material in cow manure. This effect subsequently increased the number of microorganisms associated with lignocellulose degradation, increasing carbohydrate metabolism and ATP-binding cassette transporter protein activity and enhancing fatty acid cycling pathways during chain elongation. Ultimately, this approach enabled the efficient production of medium chain carboxylic acids.


Assuntos
Biodegradação Ambiental , Esterco , Ácidos Carboxílicos/química , Anaerobiose , Animais , Bovinos , Nanoestruturas , Água/química , Ar , Nitrogênio/química , Hidrogênio/química , Transporte de Elétrons , Ácidos Graxos Voláteis/química , Clostridiales
3.
Front Endocrinol (Lausanne) ; 15: 1381949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601202

RESUMO

Objective: This study aimed to explore the association between the Chinese visceral adiposity index (CVAI) and cardiometabolic multimorbidity in middle-aged and older Chinese adults. Methods: The data used in this study were obtained from a national cohort, the China Health and Retirement Longitudinal Study (CHARLS, 2011-2018 wave). The CVAI was measured using previously validated biomarker estimation formulas, which included sex, age, body mass index, waist circumference, triglycerides, and high-density lipoprotein cholesterol. The presence of two or more of these cardiometabolic diseases (diabetes, heart disease, and stroke) is considered as cardiometabolic multimorbidity. We used Cox proportional hazard regression models to examine the association between CVAI and cardiometabolic multimorbidity, adjusting for a set of covariates. Hazard ratios (HRs) and 95% confidence intervals (CIs) were used to show the strength of the associations. We also conducted a subgroup analysis between age and sex, as well as two sensitivity analyses. Receiver operator characteristic curves (ROC) were used to test the predictive capabilities and cutoff value of the CVAI for cardiometabolic multimorbidity. Results: A total of 9028 participants were included in the final analysis, with a mean age of 59.3 years (standard deviation: 9.3) and women accounting for 53.7% of the sample population. In the fully-adjusted model, compared with participants in the Q1 of CVAI, the Q3 (HR = 2.203, 95% CI = 1.039 - 3.774) and Q4 of CVAI (HR = 3.547, 95% CI = 2.100 - 5.992) were associated with an increased risk of cardiometabolic multimorbidity. There was no evidence of an interaction between the CVAI quartiles and sex or age in association with cardiometabolic multimorbidity (P >0.05). The results of both sensitivity analyses suggested that the association between CVAI and cardiometabolic multimorbidity was robust. In addition, the area under ROC and ideal cutoff value for CVAI prediction of cardiometabolic multimorbidity were 0.685 (95% CI = 0.649-0.722) and 121.388. Conclusion: The CVAI is a valid biomarker with good predictive capability for cardiometabolic multimorbidity and can be used by primary healthcare organizations in the future for early warning, prevention, and intervention with regard to cardiometabolic multimorbidity.


Assuntos
Adiposidade , Cardiopatias , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , Estudos de Coortes , Estudos Longitudinais , Multimorbidade , China/epidemiologia , Biomarcadores
4.
Plants (Basel) ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256818

RESUMO

This study reports on the effects of pretreated biogas slurry on degraded farm soil properties, microflora and the production of Capsicum spp. The responses of soil properties, microorganisms and Capsicum spp. production to biogas slurry pretreated soil were determined. The biogas slurry pretreatment of degraded soil increases the total nitrogen (0.15-0.32 g/kg), total phosphorus (0.13-0.75 g/kg), available phosphorus (102.62-190.68 mg/kg), available potassium (78.94-140.31 mg/kg), organic carbon content (0.67-3.32 g/kg) and pH value of the soil, while the population, diversity and distribution of soil bacteria and fungi were significantly affected. Interestingly, soil ammonium nitrogen, soil pH and soil nitrate nitrogen were highly correlated with the population of bacteria and fungi present in the pretreated soil. The soil with biogas slurry pretreatment of 495 m3/hm2 favored the seedling survival rate, flowering rate and fruit-bearing rate of Capsicum spp. and significantly reduced the rate of rigid seedlings. In this study, the application of 495 m3/hm2 biogas slurry to pretreat degraded soil has achieved the multiple goals of biogas slurry valorization, soil biofertilization and preventing and controlling plant diseases caused by soil-borne pathogenic microorganisms. These findings are of significant importance for the safe and environmentally friendly application of biogas slurry for soil pretreatment.

5.
Front Endocrinol (Lausanne) ; 14: 1267503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125788

RESUMO

Objective: This prospective study aimed to evaluate the effect of beinaglutide combined with metformin versus aspart 30 with metformin on metabolic profiles and antidrug antibodies (ADAs) in patients with type 2 diabetes (T2D). Methods: A total of 134 eligible participants were randomly assigned to the test group and the control group. Patients in the test group were treated with beinaglutide and metformin, whereas patients in the control group were randomly treated with aspart 30 and metformin, with a follow-up period of 6 months. The metabolic profiles and ADAs over 6 months were evaluated. Results: After 6 months, 101 (75.37%) patients completed the study. Compared with the control group, the beinaglutide group had significant reductions in 2-h postprandial blood glucose (2hBG) and low blood glucose index (LBGI). Glycated hemoglobin (HbA1c) decreased in both groups relative to baseline. In the test group, one had treatment-emergent beinaglutide ADAs. Significant reductions in triglycerides (TG), non-fasting TG, weight, waist circumference (WC), and body mass index (BMI) were observed. The values of insulin sensitivity index (HOMA-IR) were decreased to a statistically higher degree with beinaglutide treatment. Conclusion: Beinaglutide reduces metabolic dysfunction, LBGI, and weight in patients of T2D with a low risk of ADAs. Beinaglutide may offer the potential for a disease-modifying intervention in cardiovascular disease (CVD). Clinical trial registration: www.chictr.org.cn, identifier ChiCTR2200061003.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/uso terapêutico , Hipoglicemiantes/uso terapêutico , Glicemia/metabolismo , Estudos Prospectivos , Metaboloma
6.
Iran J Pharm Res ; 22(1): e136238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116549

RESUMO

In recent years, metal-organic frameworks (MOFs) have gained attention in the biomedical field, particularly as drug carriers for treating tumors. Therefore, we decided to synthesize a novel benzoic acid Zn-based MOF and study the Zn-based MOFs' drug-delivery properties and the drug-delivery system's anticancer effects. This study successfully synthesized a zinc-based MOF using solvent thermal synthesis. The crystal structure of a Zn-based MOF was investigated using thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy. Subsequently, the results of UV spectrophotometry showed that Doxorubicin was successfully loaded with a loading amount of 33.74%. Furthermore, the drug release experiments demonstrated that the Zn-based MOF was pH-sensitive, releasing more at a pH of 3.8 than at pH 5.8 or 7.4. Finally, the Zn-based MOF loaded with drugs exhibited high antitumor activity against HepG2 cells while demonstrating remarkably low toxicity to normal cells (LO2). Taken together, these results demonstrate that the Zn-based MOF has the potential to serve as a carrier in the field of drug delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA