Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(11): 1577-1594, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38623919

RESUMO

ConspectusCarbohydrates are called the third chain of life. Carbohydrates participate in many important biochemical functions in living species, and the biological information carried by them is several orders of magnitude larger than that of nucleic acids and proteins. However, due to the intrinsic complexity and heterogeneity of carbohydrate structures, furnishing pure and structurally well-defined glycans for functional studies is a formidable task, especially for homogeneous large-size glycans. To address this issue, we have developed a donor preactivation-based one-pot glycosylation strategy enabling multiple sequential glycosylations in a single reaction vessel.The donor preactivation-based one-pot glycosylation refers to the strategy in which the glycosyl donor is activated in the absence of a glycosyl acceptor to generate a reactive intermediate. Subsequently, the glycosyl acceptor with the same anomeric leaving group is added, leading to a glycosyl coupling reaction, which is then iterated to rapidly achieve the desired glycan in the same reactor. The advantages of this strategy include the following: (1) unique chemoselectivity is obtained after preactivation; (2) it is independent of the reactivity of glycosyl donors; (3) multiple-step glycosylations are enabled without the need for intermediate purification; (4) only stoichiometric building blocks are required without complex protecting group manipulations. Using this protocol, a range of glycans including tumor-associated carbohydrate antigens, various glycosaminoglycans, complex N-glycans, and diverse bacterial glycans have been synthesized manually. Gratifyingly, the synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units has been achieved, which created a precedent in the field of polysaccharide synthesis. Recently, the synthesis of a highly branched arabinogalactan from traditional Chinese medicine featuring 140 monosaccharide units has been also accomplished to evaluate its anti-pancreatic-cancer activity. In the spirit of green and sustainable chemistry, this strategy can also be applied to light-driven glycosylation reactions, where either UV or visible light can be used for the activation of glycosyl donors.Automated synthesis is an advanced approach to the construction of complex glycans. Based on the two preactivation modes (general promoter activation mode and light-induced activation mode), a universal and highly efficient automated solution-phase synthesizer was further developed to drive glycan assembly from manual to automated synthesis. Using this synthesizer, a library of oligosaccharides covering various glycoforms and glycosidic linkages was assembled rapidly, either in a general promoter-activation mode or in a light-induced-activation mode. The automated synthesis of a fully protected fondaparinux pentasaccharide was realized on a gram scale. Furthermore, the automated synthesis of large-size polysaccharides was performed, allowing the assembly of arabinans up to an astonishing 1080-mer using the automated multiplicative synthesis strategy, taking glycan synthesis to a new height far beyond the synthesis of nucleic acids (up to 200-mer) and proteins (up to 472-mer).


Assuntos
Polissacarídeos , Polissacarídeos/química , Polissacarídeos/síntese química , Glicosilação , Automação
2.
Nat Commun ; 14(1): 8025, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049421

RESUMO

Photochemical glycosylation has attracted considerable attention in carbohydrate chemistry. However, to the best of our knowledge, visible-light-promoted glycosylation via photoactive glycosyl donor has not been reported. In the study, we report a photosensitizer-free visible-light-mediated glycosylation approach using a photoactive 2-glycosyloxy tropone as the donor. This glycosylation reaction proceeds at ambient temperature to give a wide range of O-glycosides or oligosaccharides with yields up to 99%. This method is further applied in the stereoselective preparation of various functional glycosyl phosphates/phosphosaccharides, the construction of N-glycosides/nucleosides, and the late-stage glycosylation of natural products or pharmaceuticals on gram scales, and the iterative synthesis of hexasaccharide. The protocol features uncomplicated conditions, operational simplicity, wide substrate scope (58 examples), excellent compatibility with functional groups, scalability of products (7 examples), and high yields. It provides an efficient glycosylation method for accessing O/N-glycosides and glycans.

3.
Chem Asian J ; 18(23): e202300791, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843982

RESUMO

The efficient synthesis of N-glycosides via direct N-glycosylation of amides/azacycles has been reported. The glycosylation of amides/azacycles with glycosyl halides in the presence of a catalytic amount of urea proceeded smoothly to provide the corresponding N-glycosylated amides or nucleosides in good to excellent yields with 1,2-trans-stereoselectivity. Moreover, by the addition of terpyridine, the 1,2-cis-stereoselectivity was achieved.

4.
Carbohydr Res ; 534: 108940, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37738819

RESUMO

Chemical O-glycosylation is a key step for the synthesis of sugar-containing molecules such as glycolipids. However, traditional carbohydrate chemistry is characterized by extensive use of protective groups, resulting in laborious manipulations and poor atom economy. Here, we present a protecting-group-free glycosylation strategy employing dibenzyloxy-1,3,5-triazin-2-yl glycosides (DBT-glycosides) as glycosyl donors. The DBT-glycosyl donors could be prepared directly through an alkaline nucleophilic substitution from unprotected sugars in aqueous media. The O-glycosylation of alcohols by using DBT-glycosyl donors has been carried out under mild hydrogenolytic conditions, affording the corresponding alkyl glycosides stereo-selectively in good yields.


Assuntos
Glicosídeos , Triazinas , Glicosídeos/química , Glicosilação , Estereoisomerismo
5.
ACS Appl Mater Interfaces ; 15(34): 40201-40212, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37589474

RESUMO

Abnormal glycosylation is a hallmark of tumor development, and tumor-associated carbohydrate antigens are potential immune targets for tumor therapy. Tumor-associated extracellular microvesicles are subcellular vesicles released from cell membranes that have immunogenicity similar to that of precursor cells. However, unmodified tumor-derived microvesicles have weaknesses, such as low immunogenicity, poor biostability, and short half-life in vivo. For the first time, we herein generated extracellular microvesicles containing modified tumor-associated carbohydrate antigens by constructing a cell line with highly expressed antigen-processing enzymes utilizing fluorine-modified monosaccharide substrates via a metabolic oligosaccharide engineering strategy. The microvesicles were applied to tumor immunity, achieving enhanced immunoprophylaxis and immunotherapy effects. Furthermore, the mechanisms of antitumor immunity were explored. Our findings may provide new insights into the adhibition of suitably modified extracellular microvesicles and the development of more effective carbohydrate-based anticancer vaccines.


Assuntos
Flúor , Neoplasias , Humanos , Apresentação de Antígeno , Neoplasias/terapia , Linhagem Celular , Membrana Celular
6.
ACS Appl Mater Interfaces ; 15(6): 7713-7724, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36728365

RESUMO

Despite hypersialylation of cancer cells together with a significant upregulation of sialyltransferase (ST) activity contributes to the metastatic cascade at multiple levels, there are few dedicated tools to interfere with their expression. Although transition state-based ST inhibitors are well-established, they are not membrane permeable. To tackle this problem, herein, we design and construct long-circulating, self-assembled core-shell nanoscale coordination polymer (NCP) nanoparticles carrying a transition state-based ST inhibitor, which make the inhibitor transmembrane and potently strip diverse sialoglycans from various cancer cells. In the experimental lung metastasis and metastasis prevention models, the nanoparticle device (NCP/STI) significantly inhibits metastases formation without systemic toxicity. This strategy enables ST inhibitors to be applied to cells and animals by providing them with a well-designed nanodelivery system. Our work opens a new avenue to the development of transition state-based ST inhibitors and demonstrates that NCP/STI holds great promise in achieving metastases inhibition for multiple cancers.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Animais , Neoplasias Pulmonares/tratamento farmacológico , Polímeros , Sialiltransferases
7.
Bioconjug Chem ; 33(5): 807-820, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35470665

RESUMO

Dense glycosylation and the trimeric conformation of the human immunodeficiency virus-1 (HIV-1) envelope protein limit the accessibility of some cellular glycan processing enzymes and end up with high-mannose-type N-linked glycans on the envelope spike, among which the Man5GlcNAc2 structure occupies a certain proportion. The Man5GlcNAc2 glycan composes the binding sites of some potent broadly neutralizing antibodies, and some lectins that can bind Man5GlcNAc2 show HIV-neutralizing activity. Therefore, Man5GlcNAc2 is a potential target for HIV-1 vaccine development. Herein, a highly convergent and effective strategy was developed for the synthesis of Man5 and its monofluoro-modified, trifluoro-modified, and S-linked analogues. We coupled these haptens to carrier protein CRM197 and evaluated the immunogenicity of the glycoconjugates in mice. The serological assays showed that the native Man5 conjugates failed to induce Man5-specific antibodies in vivo, while the modified analogue conjugates induced stronger antibody responses. However, these antibodies could not bind the native gp120 antigen. These results demonstrated that the immune tolerance mechanism suppressed the immune responses to Man5-related structures and the conformation of glycan epitopes on the synthesized glycoconjugates was distinct from that of native glycan epitopes on gp120.


Assuntos
HIV-1 , Vacinas , Animais , Anticorpos Neutralizantes , Epitopos/química , Glicoconjugados/metabolismo , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Humanos , Camundongos , Polissacarídeos/química
8.
Angew Chem Int Ed Engl ; 61(20): e202114726, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35133053

RESUMO

The photoinitiated intramolecular hydroetherification of alkenols has been used to form C-O bonds, but the intermolecular hydroetherification of alkenes with alcohols remains an unsolved challenge. We herein report the visible-light-promoted 2-deoxyglycosylation of alcohols with glycals. The glycosylation reaction was completed within 2 min in a high quantum yield (ϕ=28.6). This method was suitable for a wide array of substrates and displayed good reaction yields and excellent stereoselectivity. The value of this protocol was further demonstrated by the iterative synthesis of 2-deoxyglycans with α-2-deoxyglycosidic linkages up to a 20-mer in length and digoxin with ß-2-deoxyglycosidic linkages. Mechanistic studies indicated that this reaction involved a glycosyl radical cation intermediate and a photoinitiated chain process.


Assuntos
Álcoois , Alcenos , Álcoois/química , Alcenos/química , Glicosilação , Luz
9.
Glycobiology ; 32(2): 101-109, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34939084

RESUMO

O-GlcNAcylation is a post-translational modification that links metabolism with signal transduction. High O-GlcNAcylation appears to be a general characteristic of cancer cells. It promotes the invasion, metastasis, proliferation and survival of tumor cells, and alters many metabolic pathways. Glycogen metabolism increases in a wide variety of tumors, suggesting that it is an important aspect of cancer pathophysiology. Herein we focused on the O-GlcNAcylation of liver glycogen phosphorylase (PYGL)-an important catabolism enzyme in the glycogen metabolism pathway. PYGL expressed in both HEK 293T and HCT116 was modified by O-GlcNAc. And both PYGL O-GlcNAcylation and phosphorylation of Ser15 (pSer15) were decreased under glucose and insulin, whereas increased under glucagon and Na2S2O4 (hypoxia) conditions. Then, we identified the major O-GlcNAcylation site to be Ser430, and demonstrated that pSer15 and Ser430 O-GlcNAcylation were mutually reinforced. Lastly, we found that Ser430 O-GlcNAcylation was fundamental for PYGL activity. Thus, O-GlcNAcylation of PYGL positively regulated pSer15 and therefore its enzymatic activity. Our results provided another molecular insight into the intricate post-translational regulation network of PYGL.


Assuntos
N-Acetilglucosaminiltransferases , Neoplasias , Acetilglucosamina/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Humanos , N-Acetilglucosaminiltransferases/genética , Fosforilação , Processamento de Proteína Pós-Traducional
10.
Mol Cancer Res ; 20(4): 650-660, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34907035

RESUMO

Lymphocyte infiltration is an important feature of cancer. There is a complex network of chemokines that influence the degree and phenotype of lymphocyte infiltration, as well as the growth, survival, migration, and angiogenesis of tumor cells. High heterogeneity metastasis is a major obstacle to the treatment of breast cancer. Herein, we showed that O-GlcNAcylation of B lymphocyte-induced maturation protein-1 (Blimp-1) in lymphocytes inhibited the migration and invasion of breast cancer cells. It was found that Blimp-1 O-GlcNAcylation at Ser448 and Ser472 in lymphocytes promoted its nuclear localization, and blocked the bindings to three regions upstream of the ccl3l1 promoter to inhibit its expression. Decreased expression of CCL3L1 in lymphocytes not only decreased CCR5 expression in breast cancer cells, but also inhibited the membrane localization and activation of CCR5, thus blocking the migration and invasion of breast cancer cells in vitro. Therefore, O-GlcNAcylation of Blimp-1 in lymphocytes may serve as a new target for the treatment of metastatic breast cancer. IMPLICATIONS: This study reveals a new mechanism by which the lymphatic system promotes breast cancer cell metastasis.


Assuntos
Neoplasias da Mama , Linfócitos , Fator 1 de Ligação ao Domínio I Regulador Positivo , Neoplasias da Mama/patologia , Feminino , Humanos , Linfócitos/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Regiões Promotoras Genéticas
11.
RSC Med Chem ; 12(11): 1968-1976, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34825192

RESUMO

Bergenin, which is isolated from Bergenia species, exhibits various pharmacological properties. In the search for new types of immunosuppressants, a series of bergenin derivatives were designed and synthesized, and their immunosuppressive effects were evaluated by the CCK-8 assay. The experimental data demonstrated that compounds 7 and 13 showed the strongest inhibition effects on mouse splenocyte proliferation (IC50 = 3.52 and 5.39 µM, respectively). Further studies revealed that the inhibitory effect may come from the suppression of both IFN-γ and IL-4 cytokines. Alkylated derivatives of bergenin with n-hexyl and n-heptyl on the two phenolic hydroxyl groups showed better inhibitory activities. The hydrophobicity of bergenin derivatives, the configuration of the 4-OH in bergenin, and the ability to form hydrogen bonds of the substituents on the C-4 position are important to the immunosuppressive activity. This work proved that the modifications of bergenin may represent a new route to the discovery of a new class of immunosuppressive agents.

12.
ACS Appl Mater Interfaces ; 13(39): 46260-46269, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34547894

RESUMO

Rapid diagnosis and vaccine development are critical to prevent the threat posed by viruses. However, rapid tests, such as colloidal gold assays, yield false-negative results due to the low quantities of viruses; moreover, conventional virus purification, including ultracentrifugation and nanofiltration, is multistep and time-consuming, which limits laboratory research and commercial development of viral vaccines. A rapid virus enrichment and purification technique will improve clinical diagnosis sensitivity and simplify vaccine production. Hence, we developed the surface-glycosylated microbeads (glycobeads) featuring chemically synthetic glycoclusters and reversible linkers to selectively capture the influenza virus. The surface plasmon resonance (SPR) evaluation indicated broad spectrum affinity of S-linked glycosides to various influenza viruses. The magnetic glycobeads were integrated into clinical rapid diagnosis, leading to a 30-fold lower limit of detection. Additionally, the captured viruses can be released under physiological conditions, delivering purified viruses with >50% recovery and without decreasing their native infectivity. Notably, this glycobead platform will facilitate the sensitive detection and continuous one-step purification of the target virus that contributes to future vaccine production.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/diagnóstico , Microesferas , Polissacarídeos/química , Carga Viral/métodos , Animais , Sequência de Carboidratos , Cromatografia de Afinidade , Cães , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/química , Limite de Detecção , Células Madin Darby de Rim Canino , Ressonância de Plasmônio de Superfície
13.
Chem Commun (Camb) ; 57(83): 10899-10902, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34590634

RESUMO

A new glycosylation method promoted by visible light with 3,5-dimethoxyphenyl glycoside as the donor was developed. This protocol delivers both O-glycosides and N-glycosides in moderate to excellent yields using a wide range of O-nucleophiles and nucleobases as the glycosyl acceptors.

14.
Chem Rec ; 21(11): 3256-3277, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34498347

RESUMO

Glycans have been hot topics in recent years due to their exhibition of numerous biological activities. However, the heterogeneity of their natural source and the complexity of their chemical synthesis impede the progress in their biological research. Thus, the development of glycan assembly strategies to acquire plenty of structurally well-defined glycans is an important issue in carbohydrate chemistry. In this review, the latest advances in glycan assembly strategies from concepts to their applications in carbohydrate synthesis, including chemical and enzymatic/chemo-enzymatic approaches, as well as solution-phase and solid-phase/tag-assisted synthesis, are summarized. Furthermore, the automated glycan assembly techniques are also outlined.


Assuntos
Polissacarídeos
15.
RSC Med Chem ; 12(7): 1239-1243, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34355188

RESUMO

Globo H is a tumor-associated carbohydrate antigen (TACA), which serves as a valuable target for antitumor vaccine or cancer immunotherapies. However, most TACAs are T-cell-independent, and they cannot induce powerful immune response due to their poor immunogenicity. To address this problem, herein, several Globo H analogues with modification on the N-acyl group were prepared through a preactivation-based glycosylation strategy from the non-reducing end to the reducing end. These modified Globo H derivatives were then conjugated with carrier protein CRM197 to form glycoconjugates as anticancer vaccine candidates, which were used in combination with adjuvant glycolipid C34 for immunological studies. The immunological effects of these synthetic vaccine candidates were evaluated on Balb/c mice. The results showed that the fluorine-modified N-acyl Globo H conjugates can induce higher titers of IgG antibodies that can recognize the naturally occurring Globo H antigen on the surface of cancer cells and can eliminate cancer cells in the presence of a complement, indicating the potential of these synthetic glycoconjugates as anticancer vaccine candidates.

16.
J Org Chem ; 86(22): 16187-16194, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34435785

RESUMO

Carbohydrates play essential roles in various physiological and pathological processes. Trifluoromethylated compounds have wide applications in the field of medicinal chemistry. Herein, we report a practical and efficient trifluoromethylation of glycals by an electrochemical approach using CF3SO2Na as the trifluoromethyl source and MnBr2 as the redox mediator. A variety of trifluoromethylated glycals bearing different protective groups are obtained in 60-90% yields with high regioselectivity. The successful capture of a CF3 radical indicates that a radical mechanism is involved in this reaction.


Assuntos
Oxirredução
17.
EMBO Rep ; 22(7): e51678, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33987949

RESUMO

Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor ß-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.


Assuntos
Mycobacterium tuberculosis , Peixe-Zebra , Animais , Galactanos , Galectinas/genética , Camundongos
18.
Front Chem ; 9: 796690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004613

RESUMO

Herein, the convenient one-step electrochemical bromination of glycals using Bu4NBr as the brominating source under metal-catalyst-free and oxidant-free reaction conditions was described. A series of 2-bromoglycals bearing different electron-withdrawing or electron-donating protective groups were successfully synthesized in moderate to excellent yields. The coupling of tri-O-benzyl-2-bromogalactal with phenylacetylene, potassium phenyltrifluoroborate, or a 6-OH acceptor was achieved to afford 2C-branched carbohydrates and disaccharides via Sonogashira coupling, Suzuki coupling, and Ferrier rearrangement reactions with high efficiency. The radical trapping and cyclic voltammetry experiments indicated that bromine radicals may be involved in the reaction process.

19.
Chin J Nat Med ; 18(10): 729-737, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33039052

RESUMO

A series of novel pyrano[2, 3-d]trizaole compounds were synthesized and their α-glucosidase inhibitory activities were evaluated by in vitro enzyme assay. The experimental data demonstrated that compound 10f showed up to 10-fold higher inhibition (IC5074.0 ± 1.3 µmol·L-1) than acarbose. The molecular docking revealed that compound 10f could bind to α-glucosidase via the hydrophobic, π-π stacking, and hydrogen bonding interactions. The results may benefit further structural modifications to find new and potent α-glucosidase inhibitors.


Assuntos
Carboidratos/química , Inibidores de Glicosídeo Hidrolases/química , Triazóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular
20.
Curr Opin Chem Biol ; 58: 20-27, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32480314

RESUMO

Carbohydrates play important roles in life science, but their synthesis is always hampered by their complicated chemical structures. Scientists have never stopped trying to solve the problem of glycan synthesis from various aspects. Here a brief overview of recent progress in glycan synthesis, including chemical approaches, chemoenzymatic approaches, and automated synthesis, will be discussed, focusing on the efficiency of new glycosylation methods, the stereoselectivity of coupled products, and their applications in the assembly of complex glycan chains.


Assuntos
Técnicas de Química Sintética/métodos , Polissacarídeos/síntese química , Enzimas/metabolismo , Polissacarídeos/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA