Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(17): 6515-6521, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699275

RESUMO

Construction of complex molecular skeletons with ubiquitous chemical feedstocks in a single transformation is highly appealing in organic synthesis. We report a novel visible-light-induced three-component reaction for the construction of complex 2,4,5-trisubstituted oxazoles, which are valuable in medicinal chemistry, from simple and readily available iodonium-phosphonium hybrid ylides, carboxylic acids, and nitriles. This reaction features a carbenic phosphorus-nitrile hybrid ylide formation/trapping cascade, in which a photo-generated α-phosphonium carbene acts as a sequence trigger. This catalyst- and additive-free transformation exhibits high efficiency and broad substrate scope for synthesizing diverse oxazoles.

2.
ACS Nano ; 18(23): 14791-14840, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814908

RESUMO

We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.

3.
J Am Chem Soc ; 146(7): 4508-4520, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38320122

RESUMO

Electroreduction of CO2 into liquid fuels is a compelling strategy for storing intermittent renewable energy. Here, we introduce a family of facet-defined dilute copper alloy nanocrystals as catalysts to improve the electrosynthesis of n-propanol from CO2 and H2O. We show that substituting a dilute amount of weak-CO-binding metals into the Cu(100) surface improves CO2-to-n-propanol activity and selectivity by modifying the electronic structure of catalysts to facilitate C1-C2 coupling while preserving the (100)-like 4-fold Cu ensembles which favor C1-C1 coupling. With the Au0.02Cu0.98 champion catalyst, we achieve an n-propanol Faradaic efficiency of 18.2 ± 0.3% at a low potential of -0.41 V versus the reversible hydrogen electrode and a peak production rate of 16.6 mA·cm-2. This study demonstrates that shape-controlled dilute-metal-alloy nanocrystals represent a new frontier in electrocatalyst design, and precise control of the host and minority metal distributions is crucial for elucidating structure-composition-property relationships and attaining superior catalytic performance.

4.
Nanoscale Adv ; 5(23): 6524-6532, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38024297

RESUMO

Cu is an inexpensive alternative plasmonic metal with optical behaviour comparable to Au but with much poorer environmental stability. Alloying with a more stable metal can improve stability and add functionality, with potential effects on the plasmonic properties. Here we investigate the plasmonic behaviour of Cu nanorods and Cu-CuPd nanorods containing up to 46 mass percent Pd. Monochromated scanning transmission electron microscopy electron energy-loss spectroscopy first reveals the strong length dependence of multiple plasmonic modes in Cu nanorods, where the plasmon peaks redshift and narrow with increasing length. Next, we observe an increased damping (and increased linewidth) with increasing Pd content, accompanied by minimal frequency shift. These results are corroborated by and expanded upon with numerical simulations using the electron-driven discrete dipole approximation. This study indicates that adding Pd to nanostructures of Cu is a promising method to expand the scope of their plasmonic applications.

5.
Oral Dis ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37856651

RESUMO

OBJECTIVE: DNA methylation as intensively studied epigenetic regulatory mechanism exerts pleiotropic effects on dental-derived mesenchymal stem cells (DMSCs). DMSCs have self-renewal and multidifferentiation potential. Here, this review aims at summarizing the research status about application of DMSCs in tissue engineering and clarifying the roles of DNA methylation in influencing the functions of DMSCs, with expectation of paving the way for its in-depth exploration in tissue engineering. METHOD: The current research status about influence of DNA methylation in DMSCs was acquired by MEDLINE (through PubMed) and Web of Science using the keywords 'DNA methylation', 'dental-derived mesenchymal stem cells', 'dental pulp stem cells', 'periodontal ligament stem cells', 'dental follicle stem cells', 'stem cells from the apical papilla', 'stem cells from human exfoliated deciduous teeth', and 'gingival-derived mesenchymal stem cells'. RESULTS: This review indicates DNA methylation affects DMSCs' differentiation and function through inhibiting or enhancing the expression of specific gene resulted by DNA methylation-related genes or relevant inhibitors. CONCLUSION: DNA methylation can influence DMSCs in aspects of osteogenesis, adipogenesis, immunomodulatory function, and so on. Yet, the present studies about DNA methylation in DMSCs commonly focus on dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs). Little has been reported for other DMSCs.

6.
Int J Oral Sci ; 15(1): 40, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699886

RESUMO

Candida albicans is the most abundant fungal species in oral cavity. As a smart opportunistic pathogen, it increases the virulence by switching its forms from yeasts to hyphae and becomes the major pathogenic agent for oral candidiasis. However, the overuse of current clinical antifungals and lack of new types of drugs highlight the challenges in the antifungal treatments because of the drug resistance and side effects. Anti-virulence strategy is proved as a practical way to develop new types of anti-infective drugs. Here, seven artemisinins, including artemisinin, dihydroartemisinin, artemisinic acid, dihydroartemisinic acid, artesunate, artemether and arteether, were employed to target at the hyphal development, the most important virulence factor of C. albicans. Artemisinins failed to affect the growth, but significantly inhibited the hyphal development of C. albicans, including the clinical azole resistant isolates, and reduced their damage to oral epithelial cells, while arteether showed the strongest activities. The transcriptome suggested that arteether could affect the energy metabolism of C. albicans. Seven artemisinins were then proved to significantly inhibit the productions of ATP and cAMP, while reduced the hyphal inhibition on RAS1 overexpression strain indicating that artemisinins regulated the Ras1-cAMP-Efg1 pathway to inhibit the hyphal development. Importantly, arteether significantly inhibited the fungal burden and infections with no systemic toxicity in the murine oropharyngeal candidiasis models in vivo caused by both fluconazole sensitive and resistant strains. Our results for the first time indicated that artemisinins can be potential antifungal compounds against C. albicans infections by targeting at its hyphal development.


Assuntos
Artemisininas , Candidíase Bucal , Animais , Camundongos , Candida albicans , Candidíase Bucal/tratamento farmacológico , Antifúngicos/farmacologia , Hifas , Artemisininas/farmacologia
7.
J Am Chem Soc ; 145(32): 17902-17911, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534987

RESUMO

The self-assembly of shape-anisotropic nanocrystals into large-scale structures is a versatile and scalable approach to creating multifunctional materials. The tetrahedral geometry is ubiquitous in natural and manmade materials, yet regular tetrahedra present a formidable challenge in understanding their self-assembly behavior as they do not tile space. Here, we report diverse supracrystals from gold nanotetrahedra including the quasicrystal (QC) and the dimer packing predicted more than a decade ago and hitherto unknown phases. We solve the complex three-dimensional (3D) structure of the QC by a combination of electron microscopy, tomography, and synchrotron X-ray scattering. Nanotetrahedron vertex sharpness, surface ligands, and assembly conditions work in concert to regulate supracrystal structure. We also discover that the surface curvature of supracrystals can induce structural changes of the QC tiling and eventually, for small supracrystals with high curvature, stabilize a hexagonal approximant. Our findings bridge the gap between computational design and experimental realization of soft matter assemblies and demonstrate the importance of accurate control over nanocrystal attributes and the assembly conditions to realize increasingly complex nanopolyhedron supracrystals.

8.
Nano Lett ; 23(13): 5911-5918, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37339508

RESUMO

CO2 reduction (CO2R) catalyzed by an efficient, stable, and earth-abundant electrocatalyst offers an attractive means to store energy derived from renewable sources. Here, we describe the synthesis of facet-defined Cu2SnS3 nanoplates and the ligand-controlled CO2R property. We show that thiocyanate-capped Cu2SnS3 nanoplates possess excellent selectivity toward formate over a wide range of potentials and current densities, attaining a maximum formate Faradaic efficiency of 92% and partial current densities as high as 181 mA cm-2 when tested using a flow cell with gas-diffusion electrode. In situ spectroscopic measurements and theoretical calculations reveal that the high formate selectivity originates from favorable adsorption of HCOO* intermediates on cationic Sn sites that are electronically modulated by thiocyanates bound to adjacent Cu sites. Our work illustrates that well-defined multimetallic sulfide nanocrystals with tailored surface chemistries could provide a new avenue for future CO2R electrocatalyst design.

9.
J Am Chem Soc ; 144(32): 14915-14922, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35930659

RESUMO

Crystallization is a universal phenomenon underpinning many industrial and natural processes and is fundamental to chemistry and materials science. However, microscopic crystallization pathways of nanoparticle superlattices have been seldom studied mainly owing to the difficulty of real-time observation of individual self-assembling nanoparticles in solution. Here, using in situ electron microscopy, we directly image the full self-assembly pathway from dispersed nanoparticles into ordered superlattices in nonaqueous solution. We show that electron-beam irradiation controls nanoparticle mobility, and the solvent composition largely dictates interparticle interactions and assembly behaviors. We uncover a multistep crystallization pathway consisting of four distinct stages through multi-order-parameter analysis and visualize the formation, migration, and annihilation of multiple types of defects in nanoparticle superlattices. These findings open the door for achieving independent control over imaging conditions and nanoparticle assembly conditions and will enable further study of the microscopic kinetics of assembly and phase transition in nanocolloidal systems.


Assuntos
DNA , Nanopartículas , Cristalização , DNA/química , Microscopia Eletrônica , Nanopartículas/química , Transição de Fase
10.
J Am Chem Soc ; 144(28): 12673-12680, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35793438

RESUMO

The conversion of CO2 into value-added products is a compelling way of storing energy derived from intermittent renewable sources and can bring us closer to a closed-loop anthropogenic carbon cycle. The ability to synthesize nanocrystals of well-defined structure and composition has invigorated catalysis science with the promise of nanocrystals that selectively express the most favorable sites for efficient catalysis. The performance of nanocrystal catalysts for the CO2 reduction reaction (CO2RR) is typically evaluated with nanocrystal ensembles, which returns an averaged system-level response of complex catalyst-modified electrodes with each nanocrystal likely contributing a different (unknown) amount. Measurements at single nanocrystals, taken in the context of statistical analysis of a population, and comparison to macroscale measurements are necessary to untangle the complexity of the ever-present heterogeneity in nanocrystal catalysts, achieve true structure-property correlation, and potentially identify nanocrystals with outlier performance. Here, we employ environment-controlled scanning electrochemical cell microscopy to isolate and investigate the electrocatalytic CO2RR response of individual facet-defined gold nanocrystals. Using correlative microscopy approaches, we conclusively demonstrate that {110}-terminated gold rhombohedra possess superior activity and selectivity for CO2RR compared with {111}-terminated octahedra and high-index {310}-terminated truncated ditetragonal prisms, especially at low overpotentials where electrode kinetics is anticipated to dominate the current response. The methodology framework described here could inform future studies of complex electrocatalytic processes through correlative single-entity and macroscale measurement techniques.


Assuntos
Dióxido de Carbono , Nanopartículas , Dióxido de Carbono/química , Catálise , Ouro , Nanopartículas/química , Propriedades de Superfície
11.
J Am Chem Soc ; 144(30): 13538-13546, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35863043

RESUMO

Polyhedron packings have fascinated humans for centuries and continue to inspire scientists of modern disciplines. Despite extensive computer simulations and a handful of experimental investigations, understanding of the phase behaviors of synthetic tetrahedra has remained fragmentary largely due to the lack of tetrahedral building blocks with tunable size and versatile surface chemistry. Here, we report the remarkable richness of and complexity in dimension-controlled assemblies of gold nanotetrahedra. By tailoring nanocrystal interactions from long-range repulsive to hard-particle-like or to systems with short-ranged directional attractions through control of surface ligands and assembly conditions, nearly a dozen of two-dimensional and three-dimensional superstructures including the cubic diamond and hexagonal diamond polymorphs are selectively assembled. We further demonstrate multiply twinned icosahedral supracrystals by drying aqueous gold nanotetrahedra on a hydrophobic substrate. This study expands the toolbox of the superstructure by design using tetrahedral building blocks and could spur future computational and experimental work on self-assembly and phase behavior of anisotropic colloidal particles with tunable interactions.


Assuntos
Ouro , Nanopartículas , Anisotropia , Diamante , Ouro/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química
12.
Arch Microbiol ; 204(1): 79, 2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-34954815

RESUMO

Genome editing technology has progressed rapidly in recent years. Although traditional gene-editing methods, including homologous recombination, zinc finger endonucleases, and transcription activator-like effector nucleases, have substantial implications for research in genetics and molecular biology, but they have remarkable limitations, including their low efficiency, high error rate, and complex design. A new gene-editing technology, the CRISPR/Cas system, was developed based on studies of archaeal and bacterial immune responses to viruses. Owing to its high target efficiency, simple primer design, and wide applications, the CRISPR/Cas system, whose developers were awarded the Nobel Prize in Chemistry in 2020, has become the dominant genomic editing technology in academia and the pharmaceutical industry. Here, we briefly introduce the CRISPR/Cas system and its main applications for genome engineering, metabolic engineering, and transcriptional regulation in yeast, filamentous fungi, and macrofungi. The polygene and polyploid editing, construction of yeast chromosomes, yeast library creation, regulation of metabolic pathways, and CRISPR activation/CRISPR interference systems are mainly summarized and discussed. The potential applications for the treatment of fungal infections and the further transformation and application of the CRISPR/Cas system in fungi are also proposed and discussed.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Fungos/genética , Saccharomyces cerevisiae/genética , Tecnologia
13.
Bioconjug Chem ; 32(11): 2366-2376, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730939

RESUMO

While extensive studies of virus capsid assembly in environments mimicking in vivo conditions have led to an understanding of the thermodynamic driving forces at work, applying this knowledge to virus assembly in other solvents than aqueous buffers has not been attempted yet. In this study, Brome mosaic virus (BMV) capsid proteins were shown to preserve their self-assembly abilities in an aprotic polar solvent, dimethyl sulfoxide (DMSO). This facilitated protein cage encapsulation of nanoparticles and dye molecules that favor organic solvents, such as ß-NaYF4-based upconversion nanoparticles and BODIPY dye. Assembly was found to be robust relative to a surprisingly broad range of DMSO concentrations. Cargos with poor initial stability in aqueous solutions were readily encapsulated at high DMSO concentrations and then transferred to aqueous solvents, where they remained stable and preserved their function for months.


Assuntos
Bromovirus
14.
Mater Horiz ; 8(6): 1700-1710, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846500

RESUMO

Vanadium dioxide (VO2) is a unique active plasmonic material due to its intrinsic metal-insulator transition, remaining less explored. Herein, we pioneer a method to tailor the VO2 surface plasmon by manipulating its atomic defects and establish a universal quantitative understanding based on seven representative defective VO2 systems. Record high tunability is achieved for the localized surface plasmon resonance (LSPR) energy (0.66-1.16 eV) and transition temperature range (40-100 °C). The Drude model and density functional theory reveal that the charge of cations plays a dominant role in the numbers of valence electrons to determine the free electron concentration. We further demonstrate their superior performances in extensive unconventional plasmonic applications including energy-saving smart windows, wearable camouflage devices, and encryption inks.

15.
J Am Chem Soc ; 143(39): 16163-16172, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34549954

RESUMO

Ligands play a central role for the energetics and kinetics of nanocrystal assembly. Yet, the precise and simultaneous manipulation of ligands to dictate assembly outcome has proven difficult. Here, we present macromolecular ligand-engineering strategies to control, characterize, and model four molecular parameters of grafted polymer chains: chain length, chain dispersity, grafting density, and chain distribution. Direct ligand-exchange between nanoprisms and polymers functionalizes facets selectively and produces patchy nanocrystals. We develop a generalizable two-step ligand-exchange approach for the independent control of the two emergent brush parameters, brush thickness and brush softness. The resultant polymer-grafted prismatic nanocrystals with programmable ligand brushes self-assemble into thin-film superstructures of different wallpaper symmetries and faceted supracrystals. Our experiments are complemented by coarse-grained computer simulations of nanoprisms with directional, facet-specific interactions. This work paves the way for the precision synthesis of polymer-nanocrystal hybrid materials and enables the further refinement of theoretical models for particle brush materials.

16.
Anal Methods ; 13(36): 4105-4113, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34554166

RESUMO

Single entity electrochemical (SEE) studies that can probe activities and heterogeneity in activities at nanoscale require samples that contain single and isolated particles. Single, isolated nanoparticles are achieved here with electrospray deposition of colloidal nanoparticle solutions, with simple instrumentation. Role of three electrospray (ES) parameters, viz. spray distance (emitter tip-to-substrate distance), ES current and emitter tip diameter, in the ES deposition of single Au nano-octahedra (Au ODs) is examined. The ES deposition of single, isolated Au ODs are analyzed in terms of percentage of single NPs and local surface density of deposition. The local surface density of ES deposition of single Au ODs was found to increase with decrease in spray distance and emitter tip diameter, and increase in ES current. While the percentage of single particle ES deposition increased with increase in spray distance and decrease in emitter tip size. No significant change in the single Au ODs ES deposition percentage was observed with change in ES current values included in this study. The most favourable conditions in the ES deposition of Au ODs in this study resulted in the local surface density of 0.26 ± 0.05 single particles per µm2 and observation of 96.3% single Au OD deposition.


Assuntos
Ouro , Nanopartículas Metálicas
17.
Pathogens ; 10(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34451500

RESUMO

The mixed species of Staphylococcus aureus and Candida albicans can cause infections on skin, mucosa or bloodstream; however, mechanisms of their cross-kingdom interactions related to pathogenesis and drug resistance are still not clear. Here an increase of S. aureus proliferation and biofilm formation was observed in S. aureus and C. albicans dual-species culture, and the synergistic pathogenic effect was then confirmed in both local (cutaneous abscess) and systemic infection (peritonitis) murine models. According to the transcriptome analysis of the dual-species culture, virulence factors of S. aureus were significantly upregulated. Surprisingly, the beta-lactams and vancomycin-resistant genes in S. aureus as well as azole-resistant genes in C. albicans were also significantly increased. The synergistic effects on drug resistance to both antibacterial and antifungal agents were further proved both in vitro and in cutaneous abscess and peritonitis murine models treated by methicillin, vancomycin and fluconazole. The synergistic interactions between S. aureus and C. albicans on pathogenesis and drug resistance highlight the importance of targeting the microbial interactions in polyspecies-associated infections.

18.
Virulence ; 12(1): 1884-1899, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34233595

RESUMO

Candida albicans, which can cause superficial and life-threatening systemic infections, is the most common opportunistic fungal pathogen in the human microbiome. The two-component system is one of the most important C. albicans signal transduction pathways, regulating the response to oxidative and osmotic stresses, adhesion, morphogenesis, cell wall synthesis, virulence, drug resistance, and the host-pathogen interactions. Notably, some components of this signaling pathway have not been found in the human genome, indicating that the two-component system of C. albicans can be a potential target for new antifungal agents. Here, we summarize the composition, signal transduction, and regulation of the two-component system of C. albicans to emphasize its essential roles in the pathogenesis of C. albicans and the new therapeutic target for antifungal drugs.


Assuntos
Candida albicans , Proteínas Fúngicas , Transdução de Sinais , Antifúngicos/farmacologia , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Virulência
19.
Int J Antimicrob Agents ; 58(3): 106394, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34197906

RESUMO

Oral candidiasis, especially caused by Candida albicans, is the most common fungal infection of the oral cavity. The increase in drug resistance and lack of new antifungal agents call for new strategies of antifungal treatment. This study repurposed artemisinin (Art) as a potentiator to the polyene amphotericin B (AmB) and characterised their synergistic mechanism against C. albicans and oral candidiasis. The synergistic antifungal activity between Art and AmB was identified by the checkerboard and recovery plate assays according to the fractional inhibitory concentration index (FICI). Art showed no antifungal activity even at >200 mg/L. However, it significantly reduced AmB dosages against the wild-type strain and 75 clinical isolates of C. albicans (FICI ≤ 0.5). Art significantly upregulated expression of genes from the ergosterol biosynthesis pathway (ERG1, ERG3, ERG9 and ERG11), as shown by RT-qPCR, and elevated the ergosterol content of Candida cells. Increased ergosterol content significantly enhanced binding between fungal cells and the polyene agent, resulting in sensitisation of C. albicans to AmB. Drug combinations of Art and AmB showed synergistic activity against oral mucosal infection in vivo by reducing the epithelial infection area, fungal burden and inflammatory infiltrates in murine oropharyngeal candidiasis. These findings indicate a novel synergistic antifungal drug combination and a new Art mechanism of action, suggesting that drug repurposing is a clinically practical means of antifungal drug development and treatment of oral candidiasis.


Assuntos
Anfotericina B/farmacocinética , Anfotericina B/uso terapêutico , Antifúngicos/farmacocinética , Antifúngicos/uso terapêutico , Artemisininas/farmacocinética , Artemisininas/uso terapêutico , Candida albicans/genética , Candidíase Bucal/tratamento farmacológico , Candida albicans/química , Candida albicans/efeitos dos fármacos , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Ergosterol/biossíntese , Variação Genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana
20.
Nano Lett ; 21(12): 5053-5059, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34101469

RESUMO

Polymer-inorganic nanocomposites based on polymer-grafted nanocrystals (PGNCs) are enabling technologically relevant applications owing to their unique physical, chemical, and mechanical properties. While diverse PGNC superstructures have been realized through evaporation-driven self-assembly, this approach presents multifaceted challenges in experimentally probing and controlling assembly kinetics. Here, we report a kinetically controlled assembly of binary superstructures from a homogeneous disordered PGNC mixture utilizing solvent vapor annealing (SVA). Using a NaZn13-type superstructure as a model system, we demonstrate that varying the solvent vapor pressure during SVA allows for exquisite control of the rate and extent of PGNC assembly, providing access to nearly complete kinetic pathways of binary PGNC crystallization. Characterization of kinetically arrested intermediates reveals that assembly follows a multistep crystallization pathway involving spinodal-like preordering of PGNCs prior to NaZn13 nucleation. Our work opens up new avenues for the synthesis of multicomponent PGNC superstructures exhibiting multifunctionalities and emergent properties through a thorough understanding of kinetic pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA