Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35208936

RESUMO

The dynamic patterns of the belowground microbial communities and their corresponding metabolic functions, when exposed to various environmental disturbances, are important for the understanding and development of sustainable agricultural systems. In this study, a two-year field experiment with soils subjected to: chemical fertilization (F), mushroom residues (MR), combined application of chemical fertilizers and mushroom residues (MRF), and no-fertilization (CK) was conducted to evaluate the effect of fertilization on the soil bacterial taxonomic and functional compositions as well as on the rice yield. The highest rice yield was obtained under MRF. Soil microbial properties (microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), urease, invertase, acid phosphatase, and soil dehydrogenase activities) reflected the rice yield better than soil chemical characteristics (soil organic matter (SOM), total N (TN), total K (TK), available P (AP), available K (AK), and pH). Although the dominant bacterial phyla were not significantly different among fertilizations, 10 bacterial indicator taxa that mainly belonged to Actinobacteria (Nocardioides, Marmoricola, Tetrasphaera, and unclassified Intrasporangiaceae) with functions of xenobiotic biodegradation and metabolism and amino acid and nucleotide metabolism were found to strongly respond to MRF. Random Forest (RF) modeling further revealed that these 10 bacterial indicator taxa act as drivers for soil dehydrogenase, acid phosphatase, pH, TK, and C/N cycling, which directly and/or indirectly determine the rice yield. Our study demonstrated the explicit links between bacterial indicator communities, community function, soil nutrient cycling, and crop yield under organic and inorganic amendments, and highlighted the advantages of the combined chemical and organic fertilization in agroecosystems.

2.
Sci Total Environ ; 792: 148381, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34146805

RESUMO

Manures, storages for antibiotic resistance genes (ARGs), pollute soil and water as well as endanger human health. Recently, we have been searching a better solution to remove antibiotics and ARGs during aerobic composting. Here, the dynamics of chitosan addition on the profiles of 71 ARGs, bacterial communities, chlortetracycline (CTC), ofloxacin (OFX) were investigated in chicken manure composting and compared with zeolite addition. Chitosan addition effectively reduces antibiotics contents (CTC under detection limit, OFX 90.96%), amounts (18) and abundance (56.7%, 11.1% higher than zeolite addition) of ARGs and mobile genetic elements (MGEs) after 42 days composting. Network analysis indicated that a total of 27 genera strains assigned into 4 phyla (Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes) were the potential hosts of ARGs. Redundancy analysis (RDA) demonstrated that bacterial community succession is the main contributor in the variation of ARGs. Overall, chitosan addition may effect bacterial composition by influencing physic-chemical properties and the concentration of antibiotics, Cu2+, Zn2+ to reduce the risk of ARG transmission. This study gives a new strategy about antibiotics and ARGs removal from composting on the basis of previous studies.


Assuntos
Quitosana , Compostagem , Animais , Antibacterianos , Galinhas , Genes Bacterianos , Humanos , Esterco
3.
Huan Jing Ke Xue ; 41(7): 3076-3084, 2020 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608879

RESUMO

An intensive observation of ambient volatile organic compounds (VOCs) was carried out in Hangzhou, a key city in the Yangtze River Delta, during a typical photochemical pollution episode from September 14-23, 2018. The analysis results of 80 effective samples showed that the average concentration of 122 compounds of VOCs was (59.5±19.8)×10-9 during the observation period, and oxygenated VOCs (OVOCs) were the most abundant component. The assessment results of atmospheric reaction activity with ozone formation potential (OFP) showed that the average value of OFP was 145×10-9 during the observation period, of which alkenes and carbonyl compounds were the most abundant components. The chemical reactivity of VOCs in Hangzhou was equivalent to acrylonitrile. Based on the positive matrix factorization (PMF) model, five major sources of VOCs in Hangzhou were identified, including secondary formation (25.2%), combustion and industrial processing (27.2%), solvent use (17.3%), biogenic sources (9.2%), and vehicular exhaust (21.2%). The results can provide guidance for further understanding of VOC characteristics and the basis for scientific prevention and control measures in Hangzhou.

4.
PLoS One ; 11(4): e0153214, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27123594

RESUMO

Returning straw to deep soil layers by using a deep-ditching-ridge-ploughing method is an innovative management practice that improves soil quality by increasing the soil organic carbon (SOC) content. However, the optimum quantity of straw return has not been determined. To solve this practical production problem, the following treatments with different amounts of corn straw were investigated: no straw return, CK; 400 kg ha-1 straw, S400; 800 kg ha-1 straw, S800; 1200 kg ha-1 straw, S1200; and 1600 kg ha-1 straw, S1600. After straw was returned to the soil for two years, the microbial biomass C (MBC), easily oxidized organic C (EOC), dissolved organic C (DOC) and light fraction organic C (LFOC) content were measured at three soil depths (0-10, 10-20, and 20-40 cm). The results showed that the combined application of 800 kg ha-1 straw significantly increased the EOC, MBC, and LFOC contents and was a suitable agricultural practice for this region. Moreover, our results demonstrated that returning straw to deep soil layers was effective for increasing the SOC content.


Assuntos
Carbono/química , Caules de Planta/crescimento & desenvolvimento , Solo/química , Ureia/química , Zea mays/crescimento & desenvolvimento , Agricultura/métodos , Biomassa
5.
Curr Microbiol ; 63(5): 477-83, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21892633

RESUMO

Salmonella causes the majority of infections in humans and homeothermic animals. This article describes a specific polymerase chain reaction (PCR) method developed for a rapid identification of Salmonella. A gyrB-targeted species-specific primer pair, S-P-for (5'-GGT GGT TTC CGT AAA AGT A-3') and S-P-rev (5'-GAA TCG CCT GGT TCT TGC-3'), was successfully designed. PCR with all the Salmonella strains produced a 366- bp DNA fragment that was absent from all the non-Salmonella strains tested. The detection limit of the PCR was 0.01 ng with genomic DNA or 3.2 cells per assay. Good specificity was also demonstrated by fecal samples, from which only the gyrB gene of Salmonella was amplified. Using the culture-PCR method, 27 isolates on Salmonella-Shigella (SS) medium were rapidly identified as Salmonella, which was confirmed by the sequencing of the gyrB gene.


Assuntos
Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , DNA Girase/genética , Reação em Cadeia da Polimerase/métodos , Salmonella/isolamento & purificação , Animais , Fezes/microbiologia , Humanos , Dados de Sequência Molecular , Filogenia , Salmonella/classificação , Salmonella/genética , Infecções por Salmonella/microbiologia , Salmonelose Animal/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA