Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675259

RESUMO

Recent advancements in neural probe technology have become pivotal in both neuroscience research and the clinical management of neurological disorders. State-of-the-art developments have led to the advent of multichannel, high-density bidirectional neural interfaces that are adept at both recording and modulating neuronal activity within the central nervous system. Despite this progress, extant bidirectional probes designed for simultaneous recording and stimulation are beset with limitations, including elicitation of inflammatory responses and insufficient charge injection capacity. In this paper, we delineate the design and application of an innovative ultraflexible bidirectional neural probe engineered from polyimide. This probe is distinguished by its ability to facilitate high-resolution recordings and precise stimulation control in deep brain regions. Electrodes enhanced with a PEDOT:PSS/IrOx composite exhibit a substantial increase in charge storage capacity, escalating from 0.14 ± 0.01 mC/cm2 to an impressive 24.75 ± 0.18 mC/cm2. This augmentation significantly bolsters the electrodes' charge transfer efficacy. In tandem, we observed a notable reduction in electrode impedance, from 3.47 ± 1.77 MΩ to a mere 41.88 ± 4.04 kΩ, while the phase angle exhibited a positive shift from -72.61 ± 1.84° to -34.17 ± 0.42°. To substantiate the electrodes' functional prowess, we conducted in vivo experiments, where the probes were surgically implanted into the bilateral motor cortex of mice. These experiments involved the synchronous recording and meticulous analysis of neural signal fluctuations during stimulation and an assessment of the probes' proficiency in modulating directional turning behaviors in the subjects. The empirical evidence corroborates that targeted stimulation within the bilateral motor cortex of mice can modulate the intensity of neural signals in the stimulated locale, enabling the directional control of the mice's turning behavior to the contralateral side of the stimulation site.

2.
Microsyst Nanoeng ; 10: 54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654844

RESUMO

In implantable electrophysiological recording systems, the headstage typically comprises neural probes that interface with brain tissue and integrated circuit chips for signal processing. While advancements in MEMS and CMOS technology have significantly improved these components, their interconnection still relies on conventional printed circuit boards and sophisticated adapters. This conventional approach adds considerable weight and volume to the package, especially for high channel count systems. To address this issue, we developed a through-polymer via (TPV) method inspired by the through-silicon via (TSV) technique in advanced three-dimensional packaging. This innovation enables the vertical integration of flexible probes, amplifier chips, and PCBs, realizing a flexible, lightweight, and integrated device (FLID). The total weight of the FLIDis only 25% that of its conventional counterparts relying on adapters, which significantly increased the activity levels of animals wearing the FLIDs to nearly match the levels of control animals without implants. Furthermore, by incorporating a platinum-iridium alloy as the top layer material for electrical contact, the FLID realizes exceptional electrical performance, enabling in vivo measurements of both local field potentials and individual neuron action potentials. These findings showcase the potential of FLIDs in scaling up implantable neural recording systems and mark a significant advancement in the field of neurotechnology.

3.
Biomed Pharmacother ; 173: 116417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490158

RESUMO

Painful diabetic neuropathy (PDN) is a common chronic complication of diabetes that causes neuropathic pain and negatively affects the quality of life. The management of PDN is far from satisfactory. At present, interventions are primarily focused on symptomatic treatment. Ion channel disorders are a major cause of PDN, and a complete understanding of their roles and mechanisms may provide better options for the clinical treatment of PDN. Therefore, this review summarizes the important role of ion channels in PDN and the current drug development targeting these ion channels.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Humanos , Neuropatias Diabéticas/tratamento farmacológico , Qualidade de Vida , Neuralgia/etiologia , Neuralgia/complicações , Desenvolvimento de Medicamentos
4.
Aging Dis ; 14(4): 1035-1037, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163431

RESUMO

Peripheral blood is the most readily available resource for stroke patient prognosis, but there is a lack of methods to detect dynamic changes of neutrophils in peripheral blood that can be used in the clinic. Herein, we developed a procedure to characterize dynamic changes of neutrophils based on their electrical properties in rats after transient middle cerebral artery occlusion (MCAO). We characterized the specific membrane capacitance (Csm) and cytoplasmic resistance (σcyto) of approximately 27,600 neutrophils from MCAO rats 24 h after ischemia/reperfusion. We found that the Csm and σcyto of neutrophils in the MCAO group were significantly higher compared to the sham group. Furthermore, we observed a monotonically upward shift in neutrophil Csm in the MCAO group during the four 5-minute test cycles. Our findings suggest that the dynamic changes of cellular electrical properties could reflect neutrophil activity and serve as a prognostic indicator for ischemic stroke in the clinical setting.

5.
J Colloid Interface Sci ; 610: 818-829, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34893304

RESUMO

In this paper, a novel arginine-glucose derived carbonaceous-material-loaded SiO2 composite catalyst (Ar-G-CM/SiO2) was synthesized from non-toxic and harmless reagents (arginine, glucose and tetraethylorthosilicate) by simple hydrothermal process. Mesoporous SiO2 with high specific area served as support for carbonaceous material and provided extra hydrogen bond donor (HBD) groups. Ar-G-CM/SiO2 with acid-base dual functional groups (COOH, NH2) and HBD group (OH) presented 62% yield and 99% selectivity to product of propylene carbonate in CO2 cycloaddition reaction with propylene oxide even at 40 °C, 2 MPa under metal-absent and solvent-free conditions. For some less active epoxides with steric hindrance, Ar-G-CM/SiO2 also showed good yield and selectivity over 90% by raising temperature to 120 °C. Furthermore, the Ar-G-CM/SiO2 catalyst could be reused for six successive cycles without significant decrease in catalytic activity or structural deterioration, because the carbon deposition was restrained owing to the mesoporous structure of the catalyst.


Assuntos
Dióxido de Carbono , Dióxido de Silício , Catálise , Reação de Cicloadição , Compostos de Epóxi
6.
Analyst ; 146(19): 5962-5972, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34494041

RESUMO

Tumor-derived exosomes have been recognized as potential biomarkers for cancer diagnosis because they are actively involved in cancer progression and metastasis. However, progress in practical exosome analysis is still slow due to the limitation in exosome isolation and detection. The development of microfluidic devices has provided a promising analytical platform compared with traditional methods. In this study, we develop an exosome isolation and detection method based on a microfluidic device (ExoDEP-chip), which realized microsphere mediated dielectrophoretic isolation and immunoaffinity detection. Exosomes were firstly isolated by binding to antibodies pre-immobilized on the polystyrene (PS) microsphere surface and were further detected using fluorescently labeled antibodies by fluorescence microscopy. Single microspheres were then trapped into single microwells under the DEP force in the ExoDEP-chip. A wide range from 1.4 × 103 to 1.4 × 108 exosomes per mL with a detection limit of 193 exosomes per mL was obtained. Through monitoring five proteins (CD81, CEA, EpCAM, CD147, and AFP) of exosomes from three different cell lines (A549, HEK293, and HepG2), a significant difference in marker expression levels was observed in different cell lines. Therefore, this method has good prospects in exosome-based tumor marker detection and cancer diagnosis.


Assuntos
Exossomos , Dispositivos Lab-On-A-Chip , Biomarcadores Tumorais , Células HEK293 , Humanos , Microesferas
7.
Micromachines (Basel) ; 11(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948046

RESUMO

The electroporation system can serve as a tool for the intracellular delivery of foreign cargos. However, this technique is presently limited by the inaccurate electric field applied to the single cells and lack of a real-time electroporation metrics subsystem. Here, we reported a microfluidic system for precise and rapid single-cell electroporation and simultaneous impedance monitoring in a constriction microchannel. When single cells (A549) were continuously passing through the constriction microchannel, a localized high electric field was applied on the cell membrane, which resulted in highly efficient (up to 96.6%) electroporation. During a single cell entering the constriction channel, an abrupt impedance drop was noticed and demonstrated to be correlated with the occurrence of electroporation. Besides, while the cell was moving in the constriction channel, the stabilized impedance showed the capability to quantify the electroporation extent. The correspondence of the impedance variation and electroporation was validated by the intracellular delivery of the fluorescence indicator (propidium iodide). Based on the obtained results, this system is capable of precise control of electroporation and real-time, label-free impedance assessment, providing a potential tool for intracellular delivery and other biomedical applications.

8.
Nanotechnology ; 31(26): 265301, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32208371

RESUMO

In this work, we develop a new method for fabricating wafer-level gold nanoparticles covered silicon nanopillars (SNPs) combined with surface chemical modification to detect trace level carbonyl compounds based on surface-enhanced Raman scattering (SERS) technique. The SNPs are fabricated with an etching process using nano masks synthesized in oxygen-plasma bombardment of photoresist, and further deposited with gold nanoparticles on the surface, thus forming a 3D 'particles on pillars' nanostructure for sensitive SERS detection. The enhancement factor (EF) of the devices for R6G detection can achieve 1.56 × 106 times compared with a flat Si substrate. We also developed an oximation click chemistry reaction procedure by chemically modifying the nanostructures with aminooxy dodecane thiol (ADT) self-assemble modification. The chip is further integrated with a polydimethylsiloxane (PDMS) microfluidic chamber, which allows fast and convenient detection of trace carbonyl compounds in liquid samples. The SERS detection capability was demonstrated by the dropwise addition of fluorescent carbonyl compounds before and after elution. Furthermore, the device was proved with high surface consistency(<70%) for repeated measurement, which has the potential for ppb(parts per billion) level concentration of carbonyl compounds detection.

9.
Sensors (Basel) ; 18(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551558

RESUMO

Carbonyl compounds in water sources are typical characteristic pollutants, which are important indicators in the health risk assessment of water quality. Commonly used analytical chemistry methods face issues such as complex operations, low sensitivity, and long analysis times. Here, we report a silicon microfluidic device based on click chemical surface modification that was engineered to achieve rapid, convenient and efficient capture of trace level carbonyl compounds in liquid solvent. The micro pillar arrays of the chip and microfluidic channels were designed under the basis of finite element (FEM) analysis and fabricated by the microelectromechanical systems (MEMS) technique. The surface of the micropillars was sputtered with precious metal silver and functionalized with the organic substance amino-oxy dodecane thiol (ADT) by self-assembly for capturing trace carbonyl compounds. The detection of ppb level fluorescent carbonyl compounds demonstrates that the strategy proposed in this work shows great potential for rapid water quality testing and for other samples with trace carbonyl compounds.

10.
Biosens Bioelectron ; 111: 138-143, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29665553

RESUMO

This paper presents a new microfluidic impedance cytometry with crossing constriction microchannels, enabling the characterization of cellular electrical markers (e.g., specific membrane capacitance (Csm) and cytoplasm conductivity (σcy)) in large cell populations (~ 100,000 cells) at a rate greater than 100 cells/s. Single cells were aspirated continuously through the major constriction channel with a proper sealing of the side constriction channel. An equivalent circuit model was developed and the measured impedance values were translated to Csm and σcy. Neural network was used to classify different cell populations where classification success rates were calculated. To evaluate the developed technique, different tumour cell lines, and the effects of epithelial-mesenchymal transitions on tumour cells were examined. Significant differences in both Csm and σcy were found for H1299 and HeLa cell lines with a classification success rate of 90.9% in combination of the two parameters. Meanwhile, tumour cells A549 showed significant decreases in both Csm and σcy after epithelial-mesenchymal transitions with a classification success rate of 76.5%. As a high-throughput microfluidic impedance cytometry, this technique can add a new marker-free dimension to flow cytometry in single-cell analysis.


Assuntos
Técnicas Biossensoriais/instrumentação , Membrana Celular/química , Citoplasma/química , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única/instrumentação , Linhagem Celular Tumoral , Capacitância Elétrica , Impedância Elétrica , Transição Epitelial-Mesenquimal , Desenho de Equipamento , Células HeLa , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Redes Neurais de Computação
11.
Oncotarget ; 8(7): 11425-11441, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28002791

RESUMO

OBJECTIVES: To investigate the mechanism of cinobufagin-reduced cancer pain in mouse cancer pain model and in vitro cell co-culture system. METHODS: Female Kunming mice were randomly divided into 4 groups. One group of animals was set as normal control without any treatment. Other three groups of animals received H22 hepatoma cell inoculation in right hind paw. At day 9 after inoculation, mice in other three groups were injected intraperitoneally once a day for 8 days with the solvent, morphine or cinobufagin, respectively. The pain behavior was recorded daily. On the last day, all mice were sacrificed and xenograft tissues homogenate and plasma levels of ß-endorphin (ß-END), corticotropin-releasing factor (CRF) and interleukin-1ß (IL-1ß) were assessed by ELISA assay. Immunohistochemistry was performed to determine the expression of ß-END, pro-opiomelanocortin (POMC) and the µ-opioid receptor (µ-OR) in the xenograft tissues. Immunofluorescence was used to localize lymphocytes with expression of CD3+, CD4+ and CD8+ in xenograft tumors and adjacent tissues. Mice splenic lymphocytes and H22 hepatoma carcinoma ascites cells were prepared for co-culture. ß-END and CRF were detected in co-culture supernatants. The MTT assay and cytometry were used to assess cell proliferation. RT-PCR was conducted to determine the gene expression of POMC and Cathepsin L (CTSL). Chemotaxis was examined using a transwell-based migration assay. RESULTS: Compared to the model group, the thermal and mechanical pain thresholds were increased in mice after cinobufagin treatment. The expression of ß-END and CRF in the plasma and tumor tissues of cinobufagin group were much higher than that of the model group mice, but the expression of IL-1ß in the plasma and tumor tissues was much lower than that in the model group mice. Meanwhile, the expression of ß-END, POMC and µ-OR proteins was significantly increased in the xenograft tissues from cinobufagin group. Lymphocyte population of CD3+, CD4+, CD8+ were also elevated in xenograft tumors and adjacent tissues. In the cell co-culture assays, the content of ß-END in the supernatant was significantly increased by cinobufagin in a dose-dependent manner. Cinobufagin also largely increased the proliferation of immune cells and inhibited H22 hepatoma carcinoma cell proliferation in single or co-culture cell assays. Gene expression of POMC and CTSL in cinobufagin group was significantly up-regulated comparing to the control group. Finally, cinobufagin addition enhanced the migration of immune cells in transwell assay. CONCLUSIONS: Cinobufagin-induced local analgesic effect might be associated with increased activity of POMC/ß-END/µ-OR pathway released from invaded CD3/4/8 lymphocytes in cancer tissues.


Assuntos
Analgésicos/farmacologia , Bufanolídeos/farmacologia , Neoplasias Experimentais/complicações , Dor/tratamento farmacológico , Dor/etiologia , Animais , Carcinoma Hepatocelular/complicações , Linhagem Celular Tumoral , Técnicas de Cocultura , Hormônio Liberador da Corticotropina/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Interleucina-1beta/metabolismo , Neoplasias Hepáticas/complicações , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Limiar da Dor , Reação em Cadeia da Polimerase , Distribuição Aleatória , beta-Endorfina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA