Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 730: 150366, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38991254

RESUMO

Laryngeal squamous cell carcinoma (LSCC) with a high incidence and mortality rate, has a serious impact worldwide. Phosphofructokinase-1 liver type (PFKL) is a major enzyme in glycolysis progress, but its role in modulating tumorigenesis and cisplatin (DDP) chemosensitivity of LSCC was still unclear. The mRNA and protein levels of PFKL were detected by qRT-PCR and immunohistochemical assay. Cell Counting Kit-8 assay and flow cytometry were carried out to observe cell viability, as well as apoptosis and mitochondrial reactive oxygen species (mito-ROS). Extracellular acidification rate and lactate content were measured using extracellular flux analysis and lactate assay kit. Immunofluorescent staining was used to evaluate the expression of γ-H2AX foci. DNA damage was detected via single-cell gel electrophoresis. Western blotting was introduced to evaluate the protein level of PFKL, LDHA, γ-H2AX, cleaved PARP, H3K27ac, and H3K9ac. Mice xenograft model of LSCC was built for in vivo validation. The PFKL expression was significantly increased in LSCC and associated with poor survival of LSCC patients. Knockdown of PFKL in LSCC cells significantly inhibited cell viability, ECAR, lactate content, and LDHA expression, but promoted mito-ROS level. Furthermore, knockdown of PFKL enhanced response of LSCC cells to DDP by increasing DDP-induced apoptosis, promoting DDP-induced mito-ROS level, γ-H2AX foci, tail DNA, and the expression of γ-H2AX and cleaved PARP. However, the overexpression of PFKL in LSCC cells had opposite experimental results. Nude mice tumor formation experiment proved that downregulation of PFKL significantly enhanced response of cells to DDP, demonstrated by reduced tumor volume, weight and increased TUNEL-positive cells. Suppression of CBP/EP300-mediated PFKL transcription inhibited cell viability and glycolysis and promoted mito-ROS in LSCC. PFKL promotes cell viability and DNA damage repair in DDP-treated LSCC through regulation of glycolysis pathway.

2.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2345-2354, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812135

RESUMO

To investigate the effects of plumbagin on the proliferation and apoptosis of human hepatoma Huh-7 cells and its mechanism based on the creatine kinase B(CKB)/p53 signaling pathway. Huh-7 cells were treated with plumbagin from 1 to 12 µmol·L~(-1) for cell counting kit-8(CCK-8) assay, and 1, 3, and 6 µmol·L~(-1) were determined as low, medium, and high concentrations of plumbagin for subsequent experiments. CKB gene was knocked out in Huh-7 cells by clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated proteins(Cas)-9 gene editing technology. CKB overexpression lentivirus was transfected into Huh-7 cells to up-regulate the expression of CKB. Cell proliferation and apoptosis were detected by plate cloning assay and flow cytometry. The mRNA expression of CKB was detected by quantitative real-time PCR(qRT-PCR). CKB, p53, mouse double minute 2 homolog(MDM2), B-cell lymphoma 2(Bcl-2), Bcl-2 associated X protein(Bax), and caspase-3 protein were detected by Western blot(WB). The results showed that plumbagin significantly inhibited the proliferation of Huh-7 cells and induced cell apoptosis. Compared with the control group, the apoptosis level was significantly increased in the plumbagin group, while the apoptosis level was significantly decreased in the plumbagin combined with the apoptosis inhibitor group. Plumbagin significantly down-regulated the protein expression levels of CKB, Bcl-2, and MDM2 and up-regulated the protein expression levels of p53, Bax, and caspase-3. Knockdown of the CKB gene decreased the proliferative ability of Huh-7 cells, increased the apoptotic rate, decreased the expression levels of Bcl-2 and MDM2 proteins, and increased the expression levels of p53, Bax, and caspase-3 proteins. After up-regulation of CKB expression, the proliferation ability of Huh-7 cells was enhanced, and the protein expression levels of Bcl-2 and MDM2 were elevated. The protein expression levels of p53, Bax, and caspase-3 were decreased. In addition, plumbagin reversed the effect of overexpression of CKB on the proliferation and apoptosis of Huh-7 cells. In conclusion, plumbagin significantly inhibited the proliferative ability of Huh-7 cells, and the mechanism may be related to the inhibition of CKB expression, activation of the p53 signaling pathway, and regulation of the expression of mitochondrial-associated apoptotic proteins, ultimately inducing cell apoptosis.


Assuntos
Apoptose , Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , Naftoquinonas , Transdução de Sinais , Proteína Supressora de Tumor p53 , Humanos , Naftoquinonas/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
3.
J Hepatocell Carcinoma ; 11: 565-580, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525157

RESUMO

Background/Aims: Plumbagin (PL) has been shown to effe ctively inhibit autophagy, suppressing invasion and migration of hepatocellular carcinoma (HCC) cells. However, the specific mechanism remains unclear. This study aimed to investigate the effect of PL on tumor growth factor (TGF)-ß-induced epithelial-mesenchymal transition (EMT) in HCC. Methods: Huh-7 cells were cultured, and in vivo models of EMT and HCC-associated lung metastasis were developed through tail vein and in situ injections of tumor cells. In vivo imaging and hematoxylin and eosin staining were used to evaluate HCC modeling and lung metastasis. After PL intervention, the expression levels of Snail, vimentin, E-cadherin, and N-cadherin in the liver were evaluated through immunohistochemistry and Western blot. An in vitro TGF-ß-induced cell EMT model was used to detect Snail, vimentin, E-cadherin, and N-cadherin mRNA levels through a polymerase chain reaction. Their protein levels were detected by immunofluorescence staining and Western blot. Results: In vivo experiments demonstrated that PL significantly reduced the expression of Snail, vimentin, and N-cadherin, while increasing the expression of E-cadherin at the protein levels, effectively inhibiting HCC and lung metastasis. In vitro experiments confirmed that PL up-regulated epithelial cell markers, down-regulated mesenchymal cell markers, and inhibited EMT levels in HCC cells. Conclusion: PL inhibits Snail expression, up-regulates E-cadherin expression, and down-regulates N-cadherin and vimentin expression, preventing EMT in HCC cells and reducing lung metastasis.

4.
Nutr Cancer ; 76(1): 114-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38082551

RESUMO

OBJECTIVE: To investigate the application of nutritional intervention in the management of radiotherapy and chemotherapy for nasopharyngeal carcinoma. METHODS: There were 60 patients with nasopharyngeal carcinoma who were treated with chemoradiotherapy in our department from June 2020 to August 2022, including 30 subjects from the control group and 30 cases from the intervention group. RESULTS: (1) In 2002, the 3-week and 24-week NRS scores for radiotherapy and chemotherapy in the control group were higher than those in the intervention group (2.36 ± 0.85 and 1.86 ± 0.57, p = 0.014; 2.76 ± 0.77 and 2.43 ± 0.77, p = 0.023), and the difference was statistically significant (p < 0.05) (Table 2). (2) The weight of patients in the two groups after 3 wk and 24 wk of radiotherapy and chemotherapy were compared, and we found that the weights of the control group were lower than those of the intervention group (66.13 ± 5.53 and 69.03 ± 5.22, p = 0.037; 61.03 ± 5.83 and 64.93 ± 6.85, p = 0.044), and again, the difference was statistically significant (p < 0.05) (Table 3). At week 10 of chemoradiotherapy, the control group lost ≥10% of their weight in the intervention group, and severe malnutrition occurred. The control group lost ≥5% of their weight at 24 wk of chemoradiotherapy and developed malnutrition. (3) The quality of life (measured by the SF-36 scale score) after 24 wk between the two groups was compared, and the control group was lower than the intervention group in all aspects, and this difference was statistically significant (p < 0.05) (Table 4). CONCLUSION: Nutritional intervention is used in the whole management of radiotherapy and chemotherapy for nasopharyngeal carcinoma to improve patient nutritional status and quality of life.


Assuntos
Desnutrição , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/terapia , Qualidade de Vida , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/radioterapia , Quimiorradioterapia/efeitos adversos , Desnutrição/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA