Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Transplant ; 32: 9636897231182497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37345228

RESUMO

"Firefly rats" ubiquitously express the luciferase reporter gene under the control of constitutively active ROSA26 promoter in inbred Lewis rats. Due to the minimal immunogenicity of luciferase, wide applications of Firefly rats have been reported in solid organ/cell transplantation studies for in vivo imaging, permitting quantitative and non-invasive tracking of the transplanted graft. ROSA26 is a non-coding gene and generally does not affect the expression of other endogenous genes. However, the effect of ubiquitous luciferase expression on islet morphology and function has not been thoroughly investigated, which is critical for the use of Firefly rats as islet donors in islet transplantation studies. Accordingly, in vivo glucose homeostasis (i.e., islet function in the native pancreas) was compared between age-matched luciferase-expressing Firefly rats and non-luciferase-expressing rats. In vivo assessments demonstrated no statistical difference between these rats in non-fasting blood glucose levels, intraperitoneal glucose tolerance tests, and glucose-stimulated serum C-peptide levels. Furthermore, islets were isolated from both rats to compare the morphology, function, and metabolism in vitro. Isolated islets from both rats exhibited similar in vitro characteristics in post-isolation islet yield, islet size, beta cell populations, insulin content per islet, oxygen consumption rate, and glucose-stimulated insulin secretion. In conclusion, ubiquitous luciferase expression in Firefly rats does not affect their islet morphology, metabolism, and function; this finding is critical and enables the use of isolated islets from Firefly rats for the dual assessment of islet graft function and bioluminescence imaging of islet grafts.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Ratos , Animais , Vaga-Lumes/metabolismo , Ratos Endogâmicos Lew , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Luciferases , Glicemia/metabolismo
2.
Methods Mol Biol ; 2162: 243-260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32926387

RESUMO

Clustered regularly interspaced short palindromic repeat (CRISPR) and other gene editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) show great promises for research and therapeutic applications. One major concern is the off-target effects generated by these nucleases at unintended genomic sequences. In silico methods are usually used for off-target site prediction. However, based on currently available algorithms, the predicted cleavage activity at these potential off-target sites does not always reflect the true cleavage in vivo. Here we present an unbiased screening protocol using integration-defective lentiviral vector (IDLV) and deep sequencing to map the off-target sites generated by gene editing tools.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Marcação de Genes/métodos , Lentivirus/genética , Integração Viral , Vetores Genéticos/genética , Células HEK293 , Humanos
3.
BMC Med Genet ; 21(1): 101, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393201

RESUMO

BACKGROUND: Desmoplastic small round cell tumor (DSRCT) is a rare, highly aggressive, translocation-associated soft-tissue sarcoma that primarily affects children, adolescents, and young adults, with a striking male predominance. It is characterized by t(11;22) generating a novel EWSR1-WT1 fusion gene. Secondary genomic alterations are rarely described. METHODS: Tumor tissue from 83 DSRCT patients was assayed by hybrid-capture based comprehensive genomic profiling, FoundationOne® Heme next generation sequencing analysis of 406 genes and RNA sequencing of 265 genes. Tumor mutation burden was calculated from a minimum of 1.4 Mb sequenced DNA. Microsatellite instability status was determined by a novel algorithm analyzing 114 specific loci. RESULTS: Comprehensive genomic profiling identified several genomically-defined DSRCT subgroups. Recurrent genomic alterations were most frequently detected in FGFR4, ARID1A, TP53, MSH3, and MLL3 genes. With the exception of FGFR4, where the genomic alterations predicted activation, most of the alterations in the remaining genes predicted gene inactivation. No DSRCT were TMB or MSI high. CONCLUSIONS: In summary, recurrent secondary somatic alterations in FGFR4, ARID1A, TP53, MSH3, and MLL3 were detected in 82% of DSRCT, which is significantly greater than previously reported. These alterations may have both prognostic and therapeutic implications.


Assuntos
Biomarcadores Tumorais/genética , Tumor Desmoplásico de Pequenas Células Redondas/genética , Recidiva Local de Neoplasia/genética , Translocação Genética/genética , Adolescente , Adulto , Idoso , Criança , Aberrações Cromossômicas , Proteínas de Ligação a DNA/genética , Tumor Desmoplásico de Pequenas Células Redondas/diagnóstico , Tumor Desmoplásico de Pequenas Células Redondas/patologia , Feminino , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 3 Homóloga a MutS/genética , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/isolamento & purificação , Prognóstico , Proteína EWS de Ligação a RNA/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteínas WT1/genética , Adulto Jovem
4.
Mol Ther Nucleic Acids ; 19: 922-932, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32000033

RESUMO

CRISPR-Cas9 has been developed into a powerful molecular tool for genome engineering, and it has revolutionized the field of biomedical research. Despite the tremendous potential of CRISPR-Cas9 in biomedical research, precise control of CRISPR-Cas9 over the dose and exposure time is important to expand its applications. In this study, we fused Cas9 with a peptide termed small molecule-assisted shut-off (SMASh) consisting of a protease domain and a degron domain derived from hepatitis C virus (HCV). The presence of SMASh allows tight control of the Cas9 stability via a clinically approved HCV protease inhibitor asunaprevir (ASV). We showed that the engineered Cas9 responded to ASV administration and rapidly degraded in a dose- and time-dependent manner. Cas9 degradation was reversible upon ASV removal that restored the gene editing activity. We also showed that limiting the level of Cas9 in cells increased the specificity of gene editing. The SMASh tag therefore provides an effective tool to control Cas9 stability, allowing an improvement in the accuracy, safety, and versatility of the CRISPR-Cas9 system for genome editing and gene regulation studies.

5.
iScience ; 22: 409-422, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31821946

RESUMO

A major challenge in using human pluripotent stem cells (hPSCs) in therapy is the risk of teratoma formation due to contaminating undifferentiated stem cells. We used CRISPR-Cas9 for in-frame insertion of a suicide gene, iC9, into the endogenous SOX2 locus in human embryonic stem cell (ESC) line H1 for specific eradication of undifferentiated cells without affecting differentiated cells. This locus was chosen over NANOG and OCT4, two other well-characterized stem cell loci, due to significantly reduced off-target effect. We showed that undifferentiated H1-iC9 cells were induced to apoptosis by iC9 inducer AP1903, whereas differentiated cell lineages including hematopoietic cells, neurons, and islet beta-like cells were not affected. We also showed that AP1903 selectively removed undifferentiated H1-iC9 cells from a mixed cell population. This strategy therefore provides a layer of safety control before transplantation of a stem-cell-derived product in therapy.

6.
Front Neurosci ; 13: 1007, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616241

RESUMO

We describe the construction and phenotypic analysis of a human embryonic stem cell model of progressive Aß-dependent neurodegeneration (ND) with potential relevance to Alzheimer's disease (AD). We modified one allele of the normal APP locus to directly express a secretory form of Aß40 or Aß42, enabling expression from this edited allele to bypass the normal amyloidogenic APP processing pathway. Following neuronal differentiation, edited cell lines specifically accumulate intracellular aggregated/oligomeric Aß, exhibit a synaptic deficit, and have an abnormal accumulation of endolysosomal vesicles. Edited cultures progress to a stage of overt ND. All phenotypes appear at earlier culture times for Aß42 relative to Aß40. Whole transcriptome RNA-Seq analysis identified 23 up and 70 down regulated genes (differentially expressed genes) with similar directional fold change but larger absolute values in the Aß42 samples suggesting common underlying pathogenic mechanisms. Pathway/annotation analysis suggested that down regulation of extracellular matrix and cilia functions is significantly overrepresented. This cellular model could be useful for uncovering mechanisms directly linking Aß to neuronal death and as a tool to screen for new therapeutic agents that slow or prevent human ND.

7.
Sci Rep ; 9(1): 9295, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243300

RESUMO

We developed an optimized Dipheylthiocarbazone or Dithizone (DTZ) with improved physical and chemical properties to characterize human islets and insulin-producing cells differentiated from embryonic stem cells. Application of the newly formulated iDTZ (i stands for islet) over a range of temperatures, time intervals and cell and tissue types found it to be robust for identifying these cells. Through high transition zinc binding, the iDTZ compound concentrated in insulin-producing cells and proved effective at delineating zinc levels in vitro.


Assuntos
Separação Celular/instrumentação , Ditizona/química , Células-Tronco Embrionárias/citologia , Insulina/biossíntese , Ilhotas Pancreáticas/citologia , Zinco/química , Técnicas de Cultura de Células , Diferenciação Celular , Humanos , Secreção de Insulina , Microscopia de Fluorescência , Reprodutibilidade dos Testes , Temperatura
8.
Nat Commun ; 9(1): 2707, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006548

RESUMO

Balanced symmetric and asymmetric divisions of neural progenitor cells (NPCs) are crucial for brain development, but the underlying mechanisms are not fully understood. Here we report that mitotic kinesin KIF20A/MKLP2 interacts with RGS3 and plays a crucial role in controlling the division modes of NPCs during cortical neurogenesis. Knockdown of KIF20A in NPCs causes dislocation of RGS3 from the intercellular bridge (ICB), impairs the function of Ephrin-B-RGS cell fate signaling complex, and leads to a transition from proliferative to differentiative divisions. Germline and inducible knockout of KIF20A causes a loss of progenitor cells and neurons and results in thinner cortex and ventriculomegaly. Interestingly, loss of function of KIF20A induces early cell cycle exit and precocious neuronal differentiation without causing substantial cytokinesis defect or apoptosis. Our results identify a RGS-KIF20A axis in the regulation of cell division and suggest a potential link of the ICB to regulation of cell fate determination.


Assuntos
Córtex Cerebral/metabolismo , Cinesinas/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Proteínas RGS/genética , Animais , Apoptose , Ciclo Celular/genética , Diferenciação Celular , Proliferação de Células , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Citocinese/genética , Embrião de Mamíferos , Desenvolvimento Embrionário , Efrina-B1/genética , Efrina-B1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Cinesinas/deficiência , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia , Neurônios/citologia , Cultura Primária de Células , Proteínas RGS/metabolismo , Transdução de Sinais
9.
Nucleic Acids Res ; 45(5): e29, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27899664

RESUMO

Human embryonic stem cells (hESCs) are used as platforms for disease study, drug screening and cell-based therapy. To facilitate these applications, it is frequently necessary to genetically manipulate the hESC genome. Gene editing with engineered nucleases enables site-specific genetic modification of the human genome through homology-directed repair (HDR). However, the frequency of HDR remains low in hESCs. We combined efficient expression of engineered nucleases and integration-defective lentiviral vector (IDLV) transduction for donor template delivery to mediate HDR in hESC line WA09. This strategy led to highly efficient HDR with more than 80% of the selected WA09 clones harboring the transgene inserted at the targeted genomic locus. However, certain portions of the HDR clones contained the concatemeric IDLV genomic structure at the target site, probably resulted from recombination of the IDLV genomic input before HDR with the target. We found that the integrase protein of IDLV mediated the highly efficient HDR through the recruitment of a cellular protein, LEDGF/p75. This study demonstrates that IDLV-mediated HDR is a powerful and broadly applicable technology to carry out site-specific gene modification in hESCs.


Assuntos
Vetores Genéticos/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Integrases/genética , Lentivirus/genética , Reparo de DNA por Recombinação , Proteínas Virais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Bases , Linhagem Celular , DNA Concatenado/genética , DNA Concatenado/metabolismo , Edição de Genes/métodos , Vetores Genéticos/química , Genoma Humano , Células-Tronco Embrionárias Humanas/citologia , Humanos , Integrases/metabolismo , Lentivirus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo
10.
J Hematol Oncol ; 9(1): 102, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27686241

RESUMO

BACKGROUND: The efficient generation of hematopoietic stem cells (HSCs) from human-induced pluripotent stem cells (iPSCs) holds great promise in personalized transplantation therapies. However, the derivation of functional and transplantable HSCs from iPSCs has had very limited success thus far. METHODS: We developed a synthetic 3D hematopoietic niche system comprising nanofibers seeded with bone marrow (BM)-derived stromal cells and growth factors to induce functional hematopoietic cells from human iPSCs in vitro. RESULTS: Approximately 70 % of human CD34+ hematopoietic cells accompanied with CD43+ progenitor cells could be derived from this 3D induction system. Colony-forming-unit (CFU) assay showed that iPSC-derived CD34+ cells formed all types of hematopoietic colonies including CFU-GEMM. TAL-1 and MIXL1, critical transcription factors associated with hematopoietic development, were expressed during the differentiation process. Furthermore, iPSC-derived hematopoietic cells gave rise to both lymphoid and myeloid lineages in the recipient NOD/SCID mice after transplantation. CONCLUSIONS: Our study underscores the importance of a synthetic 3D niche system for the derivation of transplantable hematopoietic cells from human iPSCs in vitro thereby establishing a foundation towards utilization of human iPSC-derived HSCs for transplantation therapies in the clinic.

11.
FEBS J ; 283(17): 3239-48, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27208701

RESUMO

Recent advances in gene editing with engineered nucleases have transformed our ability to manipulate the genome from diverse organisms for applications ranging from biomedical research to disease treatment. A major complication with these engineered nucleases is the binding of the nuclease to unintended genomic sites that share sequence homology with the on-target site. Cleavage of these off-target sites followed by DNA repair using normal cellular DNA repair mechanisms can cause gene mutation or gross chromosome rearrangement. Identification of nuclease-generated off-target sites is a daunting task due to the size and complexity of the mammalian genome. Five unbiased, genome-wide strategies have been developed to detect the off-target cleavage. Some of these strategies reach the sensitivity near the detection limit of directed deep sequencing and have sufficient precision and resolution to objectively assessing the off-target effect of any engineered nuclease. Significant progress has also been made recently to boost the nuclease targeting specificity by protein engineering to modify the structure of the nuclease and alter the interaction with its genomic target. In several studied cases, the off-target effect generated by the modified nuclease is completely eliminated. These modified nucleases significantly improve the overall fidelity of gene editing. These developments will enable gene editing tools to be applied more broadly and safely in basic research and disease treatment.


Assuntos
Desoxirribonucleases/metabolismo , Edição de Genes/métodos , Engenharia de Proteínas/métodos , Animais , Sítios de Ligação/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Desoxirribonucleases/química , Desoxirribonucleases/genética , Humanos , Especificidade por Substrato , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/química , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Dedos de Zinco
12.
Sci Rep ; 5: 17808, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26643614

RESUMO

We have recently identified a chemotype of small ubiquitin-like modifier (SUMO)-specific protease (SENP) inhibitors. Prior to the discovery of their SENP inhibitory activity, these compounds were found to inhibit HIV replication, but with an unknown mechanism. In this study, we investigated the mechanism of how these compounds inhibit HIV-1. We found that they do not affect HIV-1 viral production, but significantly inhibited the infectivity of the virus. Interestingly, virions produced from cells treated with these compounds could gain entry and carry out reverse transcription, but could not efficiently integrate into the host genome. This phenotype is different from the virus produced from cells treated with the class of anti-HIV-1 agents that inhibit HIV protease. Upon removal of the SUMO modification sites in the HIV-1 integrase, the compound no longer alters viral infectivity, indicating that the effect is related to SUMOylation of the HIV integrase. This study identifies a novel mechanism for inhibiting HIV-1 integration and a new class of small molecules that inhibits HIV-1 via such mechanism that may contribute a new strategy for cure of HIV-1 by inhibiting the production of infectious virions upon activation from latency.


Assuntos
Antivirais/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/farmacologia , Humanos , Sumoilação/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
13.
Sci Rep ; 5: 11696, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26114395

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in Survival Motor Neuron 1 (SMN1), leading to degeneration of alpha motor neurons (MNs) but also affecting other cell types. Induced pluripotent stem cell (iPSC)-derived human MN models from severe SMA patients have shown relevant phenotypes. We have produced and fully characterized iPSCs from members of a discordant consanguineous family with chronic SMA. We differentiated the iPSC clones into ISL-1+/ChAT+ MNs and performed a comparative study during the differentiation process, observing significant differences in neurite length and number between family members. Analyses of samples from wild-type, severe SMA type I and the type IIIa/IV family showed a progressive decay in SMN protein levels during iPSC-MN differentiation, recapitulating previous observations in developmental studies. PLS3 underwent parallel reductions at both the transcriptional and translational levels. The underlying, progressive developmental decay in SMN and PLS3 levels may lead to the increased vulnerability of MNs in SMA disease. Measurements of SMN and PLS3 transcript and protein levels in iPSC-derived MNs show limited value as SMA biomarkers.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Biomarcadores/metabolismo , Sobrevivência Celular , Células Clonais , Técnicas de Cocultura , Feminino , Humanos , Masculino , Camundongos , Fibras Musculares Esqueléticas/citologia , Neuritos/metabolismo , Linhagem
14.
Nat Biotechnol ; 33(2): 175-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25599175

RESUMO

The utility of CRISPR-Cas9 and TALENs for genome editing may be compromised by their off-target activity. We show that integrase-defective lentiviral vectors (IDLVs) can detect such off-target cleavage with a frequency as low as 1%. In the case of Cas9, we find frequent off-target sites with a one-base bulge or up to 13 mismatches between the single guide RNA (sgRNA) and its genomic target, which refines sgRNA design.


Assuntos
Sistemas CRISPR-Cas/genética , Lentivirus/genética , Edição de RNA/genética , Vetores Genéticos , Genoma Humano , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Integrases/genética , Lentivirus/enzimologia
15.
Cancer Lett ; 356(2 Pt B): 506-516, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25304376

RESUMO

MicroRNA-21 is dysregulated in many cancers and fibrotic diseases. Since miR-21 suppresses several tumor suppressor and anti-apoptotic genes, it is considered a cancer therapeutic target. Antisense oligonucleotides are commonly used to inhibit a miRNA; however, blocking miRNA function via an antagomir is temporary, often only achieves a partial knock-down, and may be complicated by off-target effects. Here, we used transcription activator-like effector nucleases (TALENs) to disrupt miR-21 in cancerous cells. Individual deletion clones were screened and isolated without drug selection. Sequencing and quantitative RT-PCR identified clones with no miR-21 expression. The loss of miR-21 led to subtle but global increases of mRNAs containing miR-21 target sequences. Cells without miR-21 became more sensitive to cisplatin and less transformed in culture and in mouse xenografts. In addition to the increase of PDCD4 and PTEN protein, mRNAs for COL4A1, JAG1, SERPINB5/Maspin, SMAD7, and TGFBI - all are miR-21 targets and involved in TGFß and fibrosis regulation - were significantly upregulated in miR-21 knockout cells. Gene ontology and pathway analysis suggested that cell-environment interactions involving extracellular matrix can be an important miR-21 pathogenic mechanism. The study also demonstrates the value of using TALEN-mediated microRNA gene disruption in human pathobiological studies.


Assuntos
Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Endonucleases/metabolismo , MicroRNAs/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética , Neoplasias do Colo do Útero/patologia , Animais , Biomarcadores Tumorais/genética , Endonucleases/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Ativação Transcricional , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
PLoS One ; 9(4): e93575, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24691488

RESUMO

The development of human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) facilitates in vitro studies of human disease mechanisms, speeds up the process of drug screening, and raises the feasibility of using cell replacement therapy in clinics. However, the study of genotype-phenotype relationships in ESCs or iPSCs is hampered by the low efficiency of site-specific gene editing. Transcription activator-like effector nucleases (TALENs) spurred interest due to the ease of assembly, high efficiency and faithful gene targeting. In this study, we optimized the TALEN design to maximize its genomic cutting efficiency. We showed that using optimized TALENs in conjunction with single-strand oligodeoxynucleotide (ssODN) allowed efficient gene editing in human cells. Gene mutations and gene deletions for up to 7.8 kb can be accomplished at high efficiencies. We established human tumor cell lines and H9 ESC lines with homozygous deletion of the microRNA-21 (miR-21) gene and miR-9-2 gene. These cell lines provide a robust platform to dissect the roles these genes play during cell differentiation and tumorigenesis. We also observed that the endogenous homologous chromosome can serve as a donor template for gene editing. Overall, our studies demonstrate the versatility of using ssODN and TALEN to establish genetically modified cells for research and therapeutic application.


Assuntos
Células-Tronco Embrionárias/metabolismo , Estudos de Associação Genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Oligodesoxirribonucleotídeos/genética , Carcinogênese , Diferenciação Celular/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Reparo do DNA por Junção de Extremidades/genética , Células-Tronco Embrionárias/citologia , Deleção de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , MicroRNAs/genética
17.
Gene ; 519(1): 142-9, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23376452

RESUMO

Retrovirus is frequently used in the genetic modification of mammalian cells and the establishment of induced pluripotent stem cells (iPSCs) via cell reprogramming. Vector-induced genotoxicity could induce profound effect on the physiology and function of these stem cells and their differentiated progeny. We analyzed retrovirus-induced genotoxicity in somatic cell Jurkat and two iPSC lines. In Jurkat cells, retrovirus frequently activated host gene expression and gene activation was not dependent on the distance between the integration site and the transcription start site of the host gene. In contrast, retrovirus frequently down-regulated host gene expression in iPSCs, possibly due to the action of chromatin silencing that spreads from the provirus to the nearby host gene promoter. Our data raises the issue that some of the phenotypic variability observed among iPSC clones derived from the same parental cell line may be caused by retrovirus-induced gene expression changes rather than by the reprogramming process itself. It also underscores the importance of characterizing retrovirus integration and carrying out risk assessment of iPSCs before they can be applied in basic research and clinics.


Assuntos
Dano ao DNA , Células-Tronco Pluripotentes Induzidas/virologia , Linfócitos T/virologia , Diferenciação Celular/genética , Clonagem Molecular , Regulação para Baixo , Vetores Genéticos , Células HEK293 , Humanos , Células Jurkat , Mutagênese Insercional/métodos , Retroviridae , Transfecção
18.
Methods Enzymol ; 507: 1-14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22365766

RESUMO

An understanding in the life cycle of γ-retroviruses has led to significant progress in the development of murine leukemia virus (MLV)-based vectors for gene delivery and human gene therapy. An MLV-based vector consists of the cis-acting sequences important for viral replication and gene expression. The sequence that encodes viral proteins is replaced with the gene of interest. To generate infectious retroviral vectors, viral-encoded proteins are supplied in trans for virion assembly. Here, we describe a method to rapidly generate MLV vectors from transiently transfected human 293T cells. The strategies to purify and titer the vector and to detect the presence of replication competent retrovirus (RCR) in the vector harvest are also described.


Assuntos
Técnicas de Transferência de Genes , Vírus da Leucemia Murina/genética , Clonagem Molecular , Engenharia Genética/métodos , Terapia Genética/métodos , Vetores Genéticos , Células HEK293 , Humanos , Vírus da Leucemia Murina/isolamento & purificação , Carga Viral/métodos , Replicação Viral
20.
Stem Cells ; 29(12): 2090-3, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21956898

RESUMO

Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders in humans and is a common genetic cause of infant mortality. The disease is caused by loss of the survival of motoneuron (SMN) protein, resulting in the degeneration of alpha motoneurons in spinal cord and muscular atrophy in the limbs and trunk. One function of SMN involves RNA splicing. It is unclear why a deficiency in a housekeeping function such as RNA splicing causes profound effects only on motoneurons but not on other cell types. One difficulty in studying SMA is the scarcity of patient's samples. The discovery that somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) raises the intriguing possibility of modeling human diseases in vitro. We reported the establishment of five iPSC lines from the fibroblasts of a type 1 SMA patient. Neuronal cultures derived from these SMA iPSC lines exhibited a reduced capacity to form motoneurons and an abnormality in neurite outgrowth. Ectopic SMN expression in these iPSC lines restored normal motoneuron differentiation and rescued the phenotype of delayed neurite outgrowth. These results suggest that the observed abnormalities are indeed caused by SMN deficiency and not by iPSC clonal variability. Further characterization of the cellular and functional deficits in motoneurons derived from these iPSCs may accelerate the exploration of the underlying mechanisms of SMA pathogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Fenótipo , Atrofias Musculares Espinais da Infância/patologia , Animais , Diferenciação Celular , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Imunofluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos SCID , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neuritos/patologia , Retroviridae/genética , Retroviridae/metabolismo , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Teratoma/metabolismo , Teratoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA