Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 12(8): 497-509, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37399531

RESUMO

Recent studies have shown a close relationship between the gut microbiota and Crohn's disease (CD). This study aimed to determine whether mesenchymal stem cell (MSC) treatment alters the gut microbiota and fecal metabolite pathways and to establish the relationship between the gut microbiota and fecal metabolites. Patients with refractory CD were enrolled and received 8 intravenous infusions of MSCs at a dose of 1.0 × 106 cells/kg. The MSC efficacy and safety were evaluated. Fecal samples were collected, and their microbiomes were analyzed by 16S rDNA sequencing. The fecal metabolites at baseline and after 4 and 8 MSC infusions were identified by liquid chromatography-mass spectrometry (LC--MS). A bioinformatics analysis was conducted using the sequencing data. No serious adverse effects were observed. The clinical symptoms and signs of patients with CD were substantially relieved after 8 MSC infusions, as revealed by changes in weight, the CD activity index (CDAI) score, C-reactive protein (CRP) level, and erythrocyte sedimentation rate (ESR). Endoscopic improvement was observed in 2 patients. A comparison of the gut microbiome after 8 MSC treatments with that at baseline showed that the genus Cetobacterium was significantly enriched. Linoleic acid was depleted after 8 MSC treatments. A possible link between the altered Cetobacterium abundance and linoleic acid metabolite levels was observed in patients with CD who received MSCs. This study enabled an understanding of both the gut microbiota response and bacterial metabolites to obtain more information about host-gut microbiota metabolic interactions in the short-term response to MSC treatment.


Assuntos
Doença de Crohn , Células-Tronco Mesenquimais , Microbiota , Humanos , Doença de Crohn/terapia , Ácido Linoleico , Resultado do Tratamento , Células-Tronco Mesenquimais/fisiologia
2.
Heliyon ; 7(1): e06105, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553761

RESUMO

Gut microbiota has become an issue of great importance recently due to its major role in autism spectrum disorder (ASD). Over the past three decades, there has been a sustained research activity focused to explain the actual mechanism by which gut microbiota triggers/develops autism. Several genetic and epigenetic factors are involved in this disorder, with epigenetics being the most active area of research. Although the constant investigation and advancements, epigenetic implications in ASD still need a deeper functional/causal analysis. In this review, we describe the major gut microbiota metabolites and how they induce epigenetic changes in ASD along with interactions through the gut-brain axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA