Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 902: 166172, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562633

RESUMO

The global sulfur limit regulation mandates the use of 0.5 % low sulfur fuel oil (LSFO) to reduce emissions of sulfur oxides (SOx), nitrogen oxides (NOx), and particulate matter (PM). However, the addition of naphthalene (Nap) to LSFO to stabilize its quality has led to an increase in polycyclic aromatic hydrocarbons (PAHs), with Nap being the main pollutant. This study investigates the effects of Nap in ship exhaust by analyzing the emission concentrations of volatile organic compounds (VOCs) and Nap in the exhaust of 16 ships, including 2 container ships, 6 bulk carriers, 1 tanker, 2 ferries, 3 fishing vessels, and 2 harbor crafts, based on USEPA method TO-15A. The results show that the percentage of Nap emissions in the exhaust gases of the 16 ship engines ranged from 77 % to 97 % of the total volatile organic compound (TVOC). The Nap concentration in the exhaust of fishing vessels, tanker, and harbor craft exceeded the occupational exposure limit of 50,000 µg/m3, with fishing vessels having the highest TVOC and Nap concentrations. The enhanced Nap emission in the air degrades air quality in port cities and poses an obvious potential public health risk. While the benefits of the global sulfur cap are being secured, additional efforts should be made to reduce the undetected side effects. Alternative stabilizers of LSFO should be considered, or Nap emission control should be boosted to mitigate the potential negative impact on harbor air quality.

2.
Sci Rep ; 12(1): 15272, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088467

RESUMO

This study presents the real-time energy consumption of a container ship's generator engine on two round-trips from the West Coast of the US to the East Asian ports and analyzes the ship's PM10, PM2.5, NOx, SOx, CO, and HC emissions, shore power usage, and factors affecting energy consumption. The average total energy consumption and air emissions for the two round trips were 1.72 GWh and 42.1 tons, respectively. The transpacific crossing segment had the highest average energy consumption (2848 ± 361 kWh) and pollutant emission rate (78.9 ± 10.0 kg h-1). On the other hand, the West Coast of the US had the least energy consumption due to shore power adoption. Furthermore, switching from heavy fuel oil (HFO) to ultra-low-sulfur fuel oil (ULSFO) greatly reduced the emissions of PM and SOx by > 96% and NOx by 17.0%. However, CO and HC increased by 16.9% and 36.1%, respectively, implying incomplete combustion. In addition, the energy consumption was influenced by the number of reefers and wind. Therefore, this study recommends further research on energy-efficient reefers, generator engine optimization, and shore power adoption to reduce emissions from container ships.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Óleos Combustíveis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Navios , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA