Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38248610

RESUMO

This study focused on designing a single-degree-of-freedom (1-DoF) mechanism emulating the wings of rock pigeons. Three wing models were created: one with REAL feathers from a pigeon, and the other two models with 3D-printed artificial remiges made using different strengths of material, PLA and PETG. Aerodynamic performance was assessed in a wind tunnel under both stationary (0 m/s) and cruising speed (16 m/s) with flapping frequencies from 3.0 to 6.0 Hz. The stiffness of remiges was examined through three-point bending tests. The artificial feathers made of PLA have greater rigidity than REAL feathers, while PETG, on the other hand, exhibits the weakest strength. At cruising speed, although the artificial feathers exhibit more noticeable feather splitting and more pronounced fluctuations in lift during the flapping process compared to REAL feathers due to the differences in weight and stiffness distribution, the PETG feathered wing showed the highest lift enhancement (28% of pigeon body weight), while the PLA feathered wing had high thrust but doubled drag, making them inefficient in cruising. The PETG feathered wing provided better propulsion efficiency than the REAL feathered wing. Despite their weight, artificial feathered wings outperformed REAL feathers in 1-DoF flapping motion. This study shows the potential for artificial feathers in improving the flight performance of Flapping Wing Micro Air Vehicles (FWMAVs).

2.
Biomimetics (Basel) ; 8(3)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37504175

RESUMO

This work investigates the effects of body angle and wing deformation on the lift of free-flying butterflies. The flight kinematics were recorded using three high-speed cameras, and particle-image velocimetry (PIV) was used to analyze the transient flow field around the butterfly. Parametric studies via numerical simulations were also conducted to examine the force generation of the wing by fixing different body angles and amplifying the chordwise deformation. The results show that appropriately amplifying chordwise deformation enhances wing performance due to an increase in the strength of the vortex and a more stabilized attached vortex. The wing undergoes a significant chordwise deformation, which can generate a larger lift coefficient than that with a higher body angle, resulting in a 14% increase compared to a lower chordwise deformation and body angle. This effect is due to the leading-edge vortex attached to the curved wing, which alters the force from horizontal to vertical. It, therefore, produces more efficient lift during flight. These findings reveal that the chordwise deformation of the wing and the body angle could increase the lift of the butterfly. This work was inspired by real butterfly flight, and the results could provide valuable knowledge about lift generation for designing microaerial vehicles.

3.
Biomimetics (Basel) ; 7(3)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36134932

RESUMO

An alula is a small structure of feathers that prevents birds from stalling. In this study, the aerodynamic effect of an alula-like vortex generator (alula-VG) on a revolving wing was investigated using the PIV technique in a water tank. The alula-VG was mounted on a rectangular wing model at two spanwise positions. The wing model with a revolving motion was installed at different angles of attack, which included pre-stall and post-stall conditions. The velocity fields around the wing model with/without an alula-VG were measured and analyzed, including the vorticity contour, the circulation of vortex structures, and the corresponding sectional lift coefficient, which are used to explain the aerodynamic effect induced by an alula-VG. The lift-off and bursting of the leading-edge vortex (LEV) affect the magnitude of the chordwise circulation and the section lift coefficient. The results show that compared to an alula-VG mounted fixed wing model, the flow interactions among the alula-VG induced spanwise flow, the inertial force caused by the revolving motion, and the wing-tip vortex play important roles in the vortex bursting and the resultant aerodynamic performance. The effect of an alula-VG on a revolving wing depends on its spanwise position and the angle of attack of a wing model, which need to be properly matched.

4.
Bioinspir Biomim ; 16(4)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33836515

RESUMO

Bird flight involves complicated wing kinematics, especially during hovering flight. The detailed aerodynamic effects of wings with higher degrees of freedom (DOFs) remain to be further investigated. Therefore, we designed a novel multiarticulate flapping-wing robot with five DOFs on each wing. Using this robot we aimed to investigate the more complicated wing kinematics of birds, which are usually difficult to test and analyze. In this study the robot was programmed to mimic the previously observed hovering motion of passerines, and force measurements and particle image velocimetry experiments. We experimented with two different wing-folding amplitudes: one with a larger folding amplitude, similar to that of real passerines, and one with only half the amplitude. The robot kinematics were verified utilizing direct linear transformation, which confirmed that the wing trajectories had an acceptable correlation with the desired motion. According to the lift force measurements, four phases of the wingbeat cycle were characterized and elaborated through camera images and flow visualization. We found that the reduction in folding amplitude caused a higher negative force during upstrokes and also induced a greater positive force at the initial downstroke through 'wake capture'. This could increase the vertical oscillation while hovering despite a minor increase in average force production. This phenomenon was not observed during forward flight in previous studies. Our results provide a critical understanding of the effect of wing folding which is required for designing the wing kinematics of future advanced flapping-wing micro aerial vehicles.


Assuntos
Voo Animal , Passeriformes , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Asas de Animais
5.
J Vis Exp ; (115)2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27768033

RESUMO

A simple and visual method to detect multi-nucleotide polymorphism (MNP) was performed on a pneumatic droplet manipulation platform on an open surface. This approach to colorimetric DNA detection was based on the hybridization-mediated growth of gold nanoparticle probes (AuNP probes). The growth size and configuration of the AuNP are dominated by the number of DNA samples hybridized with the probes. Based on the specific size- and shape-dependent optical properties of the nanoparticles, the number of mismatches in a sample DNA fragment to the probes is able to be discriminated. The tests were conducted via droplets containing reagents and DNA samples respectively, and were transported and mixed on the pneumatic platform with the controlled pneumatic suction of the flexible PDMS-based superhydrophobic membrane. Droplets can be delivered simultaneously and precisely on an open-surface on the proposed pneumatic platform that is highly biocompatible with no side effect of DNA samples inside the droplets. Combining the two proposed methods, the multi-nucleotide polymorphism can be detected at sight on the pneumatic droplet manipulation platform; no additional instrument is required. The procedure from installing the droplets on the platform to the final result takes less than 5 min, much less than with existing methods. Moreover, this combined MNP detection approach requires a sample volume of only 10 µl in each operation, which is remarkably less than that of a macro system.


Assuntos
Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química , Nucleotídeos/genética , Colorimetria/instrumentação , DNA/química , DNA/genética , Humanos , Nanopartículas , Hibridização de Ácido Nucleico , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA