Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE/ACM Trans Comput Biol Bioinform ; 19(5): 2596-2604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34014830

RESUMO

In-silico drug repositioning or predicting new indications for approved or late-stage clinical trial drugs is a resourceful and time-efficient strategy in drug discovery. However, inferring novel candidate drugs for a disease is challenging, given the heterogeneity and sparseness of the underlying biological entities and their relationships (e.g., disease/drug annotations). By integrating drug-centric and disease-centric annotations as multi-views, we propose a multi-view graph attention network for indication discovery (MGATRx). Unlike most current similarity-based methods, we employ graph attention network on the heterogeneous drug and disease data to learn the representation of nodes and identify associations. MGATRx outperformed four other state-of-art methods used for computational drug repositioning. Further, several of our predicted novel indications are either currently investigated or are supported by literature evidence, demonstrating the overall translational utility of MGATRx.


Assuntos
Biologia Computacional , Reposicionamento de Medicamentos , Biologia Computacional/métodos , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos
2.
Ther Adv Respir Dis ; 14: 1753466620971143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33167785

RESUMO

BACKGROUND: There are two US Food and Drug Administration (FDA)-approved drugs, pirfenidone and nintedanib, for treatment of patients with idiopathic pulmonary fibrosis (IPF). However, neither of these drugs provide a cure. In addition, both are associated with several drug-related adverse events. Hence, the pursuit for newer IPF therapeutics continues. Recent studies show that joint analysis of systems-biology-level information with drug-disease connectivity are effective in discovery of biologically relevant candidate therapeutics. METHODS: Publicly available gene expression signatures from patients with IPF were used to query a large-scale perturbagen signature library to discover compounds that can potentially reverse dysregulated gene expression in IPF. Two methods were used to calculate IPF-compound connectivity: gene expression-based connectivity and feature-based connectivity. Identified compounds were further prioritized if their shared mechanism(s) of action were IPF-related. RESULTS: We found 77 compounds as potential candidate therapeutics for IPF. Of these, 39 compounds are either FDA-approved for other diseases or are currently in phase II/III clinical trials suggesting their repurposing potential for IPF. Among these compounds are multiple receptor kinase inhibitors (e.g. nintedanib, currently approved for IPF, and sunitinib), aurora kinase inhibitor (barasertib), epidermal growth factor receptor inhibitors (erlotinib, gefitinib), calcium channel blocker (verapamil), phosphodiesterase inhibitors (roflumilast, sildenafil), PPAR agonists (pioglitazone), histone deacetylase inhibitors (entinostat), and opioid receptor antagonists (nalbuphine). As a proof of concept, we performed in vitro validations with verapamil using lung fibroblasts from IPF and show its potential benefits in pulmonary fibrosis. CONCLUSIONS: As about half of the candidates discovered in this study are either FDA-approved or are currently in clinical trials for other diseases, rapid translation of these compounds as potential IPF therapeutics is possible. Further, the integrative connectivity analysis framework in this study can be adapted in early phase drug discovery for other common and rare diseases with transcriptomic profiles.The reviews of this paper are available via the supplemental material section.


Assuntos
Descoberta de Drogas , Perfilação da Expressão Gênica , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Pulmão/efeitos dos fármacos , Medicamentos para o Sistema Respiratório/farmacologia , Transcriptoma , Verapamil/farmacologia , Células Cultivadas , Bases de Dados Genéticas , Reposicionamento de Medicamentos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Terapia de Alvo Molecular , Estudo de Prova de Conceito
3.
Pharmaceuticals (Basel) ; 11(2)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874824

RESUMO

Efforts to maximize the indications potential and revenue from drugs that are already marketed are largely motivated by what Sir James Black, a Nobel Prize-winning pharmacologist advocated-"The most fruitful basis for the discovery of a new drug is to start with an old drug". However, rational design of drug mixtures poses formidable challenges because of the lack of or limited information about in vivo cell regulation, mechanisms of genetic pathway activation, and in vivo pathway interactions. Hence, most of the successfully repositioned drugs are the result of "serendipity", discovered during late phase clinical studies of unexpected but beneficial findings. The connections between drug candidates and their potential adverse drug reactions or new applications are often difficult to foresee because the underlying mechanism associating them is largely unknown, complex, or dispersed and buried in silos of information. Discovery of such multi-domain pharmacomodules-pharmacologically relevant sub-networks of biomolecules and/or pathways-from collection of databases by independent/simultaneous mining of multiple datasets is an active area of research. Here, while presenting some of the promising bioinformatics approaches and pipelines, we summarize and discuss the current and evolving landscape of computational drug repositioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA