Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38464106

RESUMO

Skin has been shown to be a regulatory hub for energy expenditure and metabolism: mutations of skin lipid metabolism enzymes can change the rate of thermogenesis and susceptibility to diet-induced obesity. However, little is known about the physiological basis for this function. Here we show that the thermal properties of skin are highly reactive to diet: within three days, a high fat diet reduces heat transfer through skin. In contrast, a dietary manipulation that prevents obesity accelerates energy loss through skins. We found that skin was the largest target in a mouse body for dietary fat delivery, and that fat was assimilated both by epidermis and by dermal white adipose tissue. Dietary triglyceride acyl groups persist in skin for weeks after feeding. Using multi-modal lipid profiling, we have implicated both keratinocytes and sebocytes in the altered lipids which correlate with thermal function. In response to high fat feeding, wax diesters and ceramides accumulate, and triglycerides become more saturated. In contrast, in response to the dramatic loss of adipose tissue that accompanies restriction of the branched chain amino acid isoleucine, skin becomes highly heat-permeable: skins shows limited uptake of dietary lipids and editing of wax esters, and acquires a signature of depleted signaling lipids, which include the acyl carnitines and lipid ethers. We propose that skin should be routinely included in physiological studies of lipid metabolism, given the size of the skin lipid reservoir and its adaptable functionality.

2.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G556-G569, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37753583

RESUMO

Parenteral nutrition (PN) prevents starvation and supports metabolic requirements intravenously when patients are unable to be fed enterally. Clinically, infants are frequently provided PN in intensive care settings along with exposure to antibiotics (ABX) to minimize infection during care. Unfortunately, neonates experience extremely high rates of hepatic complications. Adult rodent and piglet models of PN are well-established but neonatal models capable of leveraging the considerable transgenic potential of the mouse remain underdeveloped. Utilizing our newly established neonatal murine PN mouse model, we administered ABX or controlled drinking water to timed pregnant dams to disrupt the maternal microbiome. We randomized mouse pups to PN or sham surgery controls +/- ABX exposure. ABX or short-term PN decreased liver and brain organ weights, intestinal length, and mucosal architecture (vs. controls). PN significantly elevated evidence of hepatic proinflammatory markers, neutrophils and macrophage counts, bacterial colony-forming units, and evidence of cholestasis risk, which was blocked by ABX. However, ABX uniquely elevated metabolic regulatory genes resulting in accumulation of hepatocyte lipids, triglycerides, and elevated tauro-chenoxycholic acid (TCDCA) in serum. Within the gut, PN elevated the relative abundance of Akkermansia, Enterococcus, and Suterella with decreased Anaerostipes and Lactobacillus compared with controls, whereas ABX enriched Proteobacteria. We conclude that short-term PN elevates hepatic inflammatory stress and risk of cholestasis in early life. Although concurrent ABX exposure protects against hepatic immune activation during PN, the dual exposure modulates metabolism and may contribute toward early steatosis phenotype, sometimes observed in infants unable to wean from PN.NEW & NOTEWORTHY This study successfully established a translationally relevant, murine neonatal parenteral nutrition (PN) model. Short-term PN is sufficient to induce hepatitis-associated cholestasis in a neonatal murine model that can be used to understand disease in early life. The administration of antibiotics during PN protects animals from bacterial translocation and proinflammatory responses but induces unique metabolic shifts that may predispose the liver toward early steatosis.


Assuntos
Colestase , Fígado Gorduroso , Suínos , Adulto , Lactente , Feminino , Gravidez , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Modelos Animais de Doenças , Nutrição Parenteral Total , Homeostase , Animais Geneticamente Modificados
3.
Biochimie ; 210: 82-98, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36372307

RESUMO

Thermoneutral housing has been shown to promote more accurate and robust development of several pathologies in mice. Raising animal housing temperatures a few degrees may create a relatively straightforward opportunity to improve translatability of mouse models. In this commentary, we discuss the changes of physiology induced in mice housed at thermoneutrality, and review techniques for measuring systemic thermogenesis, specifically those affecting storage and mobilization of lipids in adipose depots. Environmental cues are a component of the information integrated by the brain to calculate food consumption and calorie deposition. We show that relative humidity is one of those cues, inducing a rapid sensory response that is converted to a more chronic susceptibility to obesity. Given high inter-institutional variability in the regulation of relative humidity, study reproducibility may be improved by consideration of this factor. We evaluate a "humanized" environmental cycling protocol, where mice sleep in warm temperature housing, and are cool during the wake cycle. We show that this protocol suppresses adaptation to cool exposure, with consequence for adipose-associated lipid storage. To evaluate systemic cues in mice housed at thermoneutral temperatures, we characterized the circulating lipidome, and show that sera are highly depleted in some HDL-associated phospholipids, specifically phospholipids containing the essential fatty acid, 18:2 linoleic acid, and its derivative, arachidonic acid (20:4) and related ether-phospholipids. Given the role of these fatty acids in inflammatory responses, we propose they may underlie the differences in disease progression observed at thermoneutrality.


Assuntos
Obesidade , Fosfolipídeos , Animais , Camundongos , Umidade , Reprodutibilidade dos Testes , Temperatura , Obesidade/metabolismo , Fosfolipídeos/metabolismo , Tecido Adiposo Marrom/metabolismo
4.
Biochem Biophys Res Commun ; 527(3): 589-595, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32423819

RESUMO

In mouse, there are four stearoyl-CoA desaturase isoforms (SCD1-4) that catalyze the synthesis of monounsaturated fatty acids. Previously, we have shown that mice harboring a whole body deletion of the SCD1 isoform (SCD1KO) are protected from diet and genetically induced adiposity. Here, we report that global deletion of the SCD2 isoform (SCD2KO) provides a similar protective effect against the onset of both high-fat diet (HFD) and high-carbohydrate diet (HCD) induced adiposity. After 10 weeks of HFD feeding or 6 weeks of HCD feeding, SCD2KO mice failed to gain weight and had decreased fat mass. On HFD, SCD2KO mice remained glucose and insulin tolerant. Lastly, the markers for energy expenditure, UCP1 and PGC-1α, were increased in the brown adipose tissue of HFD fed SCD2KO mice.


Assuntos
Adiposidade , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Deleção de Genes , Obesidade/genética , Estearoil-CoA Dessaturase/genética , Animais , Metabolismo Energético , Feminino , Glucose/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Fatores de Proteção , Estearoil-CoA Dessaturase/deficiência , Estearoil-CoA Dessaturase/metabolismo
5.
J Lipid Res ; 56(2): 379-89, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25535286

RESUMO

Acyl-CoA:monoacylglycerol acyltransferase (MGAT) 2 catalyzes triacylglycerol (TAG) synthesis, required in intestinal fat absorption. We previously demonstrated that mice without a functional MGAT2-coding gene (Mogat2(-/-)) exhibit increased energy expenditure and resistance to obesity induced by excess calories. One critical question raised is whether lacking MGAT2 during early development is required for the metabolic phenotypes in adult mice. In this study, we found that Mogat2(-/-) pups grew slower than wild-type littermates during the suckling period. To determine whether inactivating MGAT2 in adult mice is sufficient to confer resistance to diet-induced obesity, we generated mice with an inducible Mogat2-inactivating mutation. Mice with adult-onset MGAT2 deficiency (Mogat2(AKO)) exhibited a transient decrease in food intake like Mogat2(-/-) mice when fed a high-fat diet and a moderate increase in energy expenditure after acclimatization. They gained less weight than littermate controls, but the difference was smaller than that between wild-type and Mogat2(-/-) mice. The moderate reduction in weight gain was associated with reduced hepatic TAG and improved glucose tolerance. Similar protective effects were also observed in mice that had gained weight on a high-fat diet before inactivating MGAT2. These findings suggest that adult-onset MGAT2 deficiency mitigates metabolic disorders induced by high-fat feeding and that MGAT2 modulates early postnatal nutrition and may program metabolism later in life.


Assuntos
Aciltransferases/metabolismo , Gorduras na Dieta/efeitos adversos , Intolerância à Glucose/enzimologia , Intolerância à Glucose/prevenção & controle , Obesidade/enzimologia , Obesidade/prevenção & controle , Aciltransferases/genética , Animais , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Intolerância à Glucose/genética , Masculino , Camundongos , Obesidade/genética
6.
J Nutr ; 132(7): 1840-7, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12097657

RESUMO

Cells in culture die by apoptosis when deprived of the essential nutrient choline. We now report that cells (both proliferating PC12 cells and postmitotic neurons isolated from fetal rat brains) undergo apoptosis when deprived of other individual essential nutrients (methionine, tryptophan or isoleucine). In PC12 cells, deficiencies of each nutrient independently led to ceramide accumulation and to caspase activation, both recognized signals of several apoptotic pathways. A similar profile of caspases was activated in PC12 cells deprived of choline, methionine, tryptophan or isoleucine. More than one caspase was involved and these caspases appeared to transmit parallel signals for apoptosis induction because only broad-spectrum caspase inhibitors, but not inhibitors for specific individual caspases inhibited apoptosis in choline- or methionine-deprived cells. The induction of these caspase-dependent apoptosis pathways likely did not involve the same upstream signals. Choline deficiency perturbed choline metabolism but did not affect protein synthesis, whereas amino acid deficiencies inhibited protein synthesis but did not perturb choline metabolism. In addition, a subclone of PC12 cells that was resistant to choline deficiency-induced apoptosis was not resistant to tryptophan deficiency-induced apoptosis. These observations suggest that deficiency of each studied nutrient activates different pathways for signaling apoptosis that ultimately converge on a common execution pathway.


Assuntos
Apoptose/fisiologia , Colina/metabolismo , Isoleucina/deficiência , Metionina/deficiência , Distúrbios Nutricionais/fisiopatologia , Triptofano/deficiência , Aminoácidos/deficiência , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ceramidas/sangue , Inibidores de Cisteína Proteinase/farmacologia , Ativação Enzimática , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA