Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Eur J Pharmacol ; 984: 177070, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39442745

RESUMO

BACKGROUND: Methylglyoxal (MGO) is a potent precursor of glycative stress that leads to oxidative stress and muscle atrophy in diabetes. Spatheliachromen (FPATM-20), derived from Ficus pumila var. awkeotsang, exhibited potential antioxidant activity. PURPOSE: This study aimed to evaluate the potential impact and underlying mechanisms of FPATM-20 on MGO-induced myotube atrophy and mitochondrial dysfunction in mouse skeletal C2C12 myotubes. METHODS: Atrophic and antioxidant factors were evaluated using immunofluorescence, enzyme-linked immunosorbent assay, and western blotting. Mitochondrial function was assessed using the ATP assay and Seahorse Cell Mito Stress Test. The glycogen content was determined using periodic acid-Schiff staining. Molecular docking was performed to determine the interaction between FPATM-20 and Keap1. RESULTS: In myotubes treated with MGO, FPATM-20 activated the Nrf2 pathway, reduced ROS levels, enhanced antioxidant defense, and increased glycogen content. FPATM-20 improved myotube viability and size, upregulated myosin heavy chain (MyHC) expression, modulated ubiquitin-proteasome molecules (nuclear FoxO3a, atrogin-1, MuRF-1, and p62/SQSTM1), and inhibited apoptosis (Bax/Bcl-2 ratio and cleaved caspase 3). Moreover, FPATM-20 restored mitochondrial function, including mitochondrial membrane potential, mitochondrial oxygen consumption rate, and mitochondrial biogenesis pathway (nuclear PGC-1α/TFAM/FNDC5). The inhibition of Nrf2 with ML385 reversed the effects of FPATM-20 on MGO. Furthermore, molecular docking confirmed the binding of FPATM-20 to Keap1, a suppressor of Nrf2, showing the crucial role of Nrf2 in protective effects. CONCLUSIONS: FPATM-20 protects myotubes from MGO toxicity by activating the Nrf2 antioxidant defense, reducing protein degradation and apoptosis, and enhancing mitochondrial function. Thus, FPATM-20 may be a novel agent for preventing skeletal muscle atrophy.

2.
Heliyon ; 10(19): e38411, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39416811

RESUMO

Background: Drug resistance is one of the leading causes attributed to the failure of cancer treatment by chemotherapy. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating gene expression in cell defense against oxidative stress or hazardous factors. Taking advantage of this feature, Nrf2 also serves as the bodyguard for both normal and cancer cells. Many pieces of evidence have reported that inhibiting Nrf2 activity in cancer cells can reverse chemotherapy drug resistance. In addition, secondary metabolites from medicinal plants have been reported to inhibit Nrf2 activity in the in vitro study. This study aimed to preliminarily investigate fractions from medicinal herbs that inhibit Nrf2 activity in Huh7 liver cancer cells, thereby establishing a basis for subsequent isolation and extraction processes. Materials and methods: Sub-fractions from five medicinal plants have been evaluated the Nrf2 inhibitor activity on Huh7 cells through luciferase-reported genes assay. Thin-layer chromatography (TLC) was also performed to quantify the extracts' main phytochemistry components. Combining the half-maximal inhibitory concentration (IC50) and half-maximal cytotoxicity concentration (CC50) enables us to determine which extracts have the potential for further isolation steps. Results: Ten over 30 crude extracts and sub-fractions showed the inhibition of Nrf2 activity with the percentage ranging from 30 to 97 %. The methanol and n-hexane sub-fractions from Helicteres hirsuta Lour. leaves showed the strongest inhibition ability on Nrf2 activity with the IC50 = 20.98 ± 3.67 and 42.22 ± 2.10 µg/mL, respectively. The TLC results showed the presence of steroids and terpenoids in the promising sub-fractions. Conclusions: Combining the TLC results with the in vitro screening on Nrf2 activity screening of medicinal plants, the outcomes suggest the steroids and terpenoids in the methanol extract and hexane sub-fraction from Helicteres hirsuta Lour. leaves show promise towards inhibiting Nrf2 activity in liver cancer cell lines without toxicity in the normal cells.

3.
Front Pharmacol ; 15: 1403424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119616

RESUMO

Background: Bortezomib (BTZ), a primary treatment for MM, but its effectiveness can be reduced by interactions with vicinal diol moieties (VDMs) in polyphenols. Despite this, it's debated whether BTZ therapy necessitates avoiding polyphenol-rich products, given the low bioavailability of polyphenols. Additionally, it remains unclear whether the structure of polyphenols contributes to their BTZ antagonism. Therefore, our study aims to unravel the structure-activity relationship of dietary polyphenols and their BTZ antagonism at daily diet-achievable physiological concentrations. Methods: We assessed the antagonistic effects of 25 polyphenols against BTZ using cell viability assays in RPMI 8226 cells. ChemGPS-NP helped analyze the structural similarity. Additionally, long-term cytotoxicity assays evaluated these effects at physiologically relevant concentrations. Results: By cell viability assays, we found a positive correlation between the number of VDMs in gallotannins and their BTZ antagonism. Moreover, the origin and configuration of VDMs, rather than the total VDM concentration, play a pivotal role in the combined antagonistic effects against BTZ in gallotannins. Additionally, ChemGPS-NP analysis indicated that the aromaticity and C-3 hydroxyl group in flavonoids' C-rings enhance their BTZ antagonism. Finally, long-term cytotoxicity assays reveal that gallic acid (GA), epigallocatechin (EGC), and epigallocatechin gallate (EGCG), at their physiological concentrations-attainable through tea consumption-significantly and synergistically antagonize BTZ. Conclusion: Due to the potential for these polyphenols to reduce the effectiveness of BTZ, it is advisable for MM patients undergoing BTZ treatment to reduce their consumption of foods high in VDM-containing polyphenols.

4.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727308

RESUMO

Bisindole alkaloids are a source of inspiration for the design and discovery of new-generation anticancer agents. In this study, we investigated the cytotoxic and antiproliferative activities of three spirobisindole alkaloids from the traditional anticancer Philippine medicinal plant Voacanga globosa, along with their mechanisms of action. Thus, the alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) showed in vitro cytotoxicity and antiproliferative activities against the tested cell lines (L929, KB3.1, A431, MCF-7, A549, PC-3, and SKOV-3) using MTT and CellTiter-Blue assays. Globospiramine (1) was also screened against a panel of breast cancer cell lines using the sulforhodamine B (SRB) assay and showed moderate cytotoxicity. It also promoted the activation of apoptotic effector caspases 3 and 7 using Caspase-Glo 3/7 and CellEvent-3/7 apoptosis assays. Increased expressions of cleaved caspase 3 and PARP in A549 cells treated with 1 were also observed. Apoptotic activity was also confirmed when globospiramine (1) failed to promote the rapid loss of membrane integrity according to the HeLa cell membrane permeability assay. Network pharmacology analysis, molecular docking, and molecular dynamics simulations identified MAPK14 (p38α), a pharmacological target leading to cancer cell apoptosis, as a putative target. Low toxicity risks and favorable drug-likeness were also predicted for 1. Overall, our study demonstrated the anticancer potentials and apoptotic mechanisms of globospiramine (1), validating the traditional medicinal use of Voacanga globosa.


Assuntos
Apoptose , Proliferação de Células , Alcaloides Indólicos , Proteína Quinase 14 Ativada por Mitógeno , Simulação de Acoplamento Molecular , Humanos , Células A549 , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Simulação de Dinâmica Molecular , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
5.
Arch Toxicol ; 98(5): 1543-1560, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424264

RESUMO

Excavatolide C (EXCC), a marine coral-derived compound, exhibits an antiproliferation effect on bladder cancer cells. The present study evaluated the improvement in the antiproliferation ability of EXCC by co-treatment with cisplatin in bladder cancer cells. EXCC/cisplatin (12.5 and 1 µg/mL) showed higher antiproliferation effects on bladder cancer cells than single treatments (EXCC or cisplatin alone) in the 48 h ATP assay. EXCC/cisplatin also enhanced the increase in subG1, annexin V-mediated apoptosis, and activation of poly (ADP-ribose) polymerase (PARP) and several caspases (caspases 3, 8, and 9) compared to the single treatments. Cellular and mitochondrial oxidative stress was enhanced with EXCC/cisplatin compared to the single treatments according to analyses of reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial membrane potential; in addition, cellular antioxidants, such as glutathione (GSH), and the mRNA expressions of antioxidant signaling genes (catalase and NFE2-like bZIP transcription factor 2) were downregulated. EXCC/cisplatin treatment produced more DNA damage than the single treatments, as indicated by γH2AX and 8-hydroxy-2'-deoxyguanosine levels. Moreover, several DNA repair genes for homologous recombination (HR) and non-homologous end joining (NHEJ) were downregulated in EXCC/cisplatin compared to others. The addition of the GSH precursor N-acetylcysteine, which has ROS scavenging activity, attenuated all EXCC/cisplatin-induced changes. Notably, EXCC/cisplatin showed lower antiproliferation, apoptosis, ROS induction, GSH depletion, and γH2AX DNA damage in normal cells than in bladder cancer cells. Therefore, the co-treatment of EXCC/cisplatin reduces the proliferation of bladder cancer cells via oxidative stress-mediated mechanisms with normal cell safety.


Assuntos
Cisplatino , Neoplasias da Bexiga Urinária , Humanos , Espécies Reativas de Oxigênio/metabolismo , Cisplatino/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Antioxidantes/farmacologia , Dano ao DNA , Caspases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
6.
BMC Complement Med Ther ; 24(1): 28, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195460

RESUMO

BACKGROUND: Indigofera suffruticosa Mill. is used as a folk medicine for treating patients with leukemia, however very little is known regarding the molecular mechanism of its anti-leukemic activity and the chemical profile of the active extract. The present study aimed to reveal the molecular effect of I. suffruticosa aerial parts extract (ISAE) on leukemia cells and its chemical constituents. METHODS: Cytotoxicity of ISAE were determined by resazurin viability assay, multitox - Glo multiplex cytotoxicity assay, and Annexin V staining assay. Cell cycle profiles were revealed by propidium iodide staining assay. The effects of ISAE on G2/M arrest signaling and DNA damage were evaluated by Western blot assay and phospho-H2A.X staining assay. The chemical profile of ISAE were determined by tandem mass spectroscopy and molecular networking approach. RESULTS: We showed that the acute lymphoblastic leukemia cell line Jurkat cell was more responsive to ISAE treatment than other leukemia cell lines. In contrast, ISAE did not induce cytotoxic effects in normal fibroblast cells. Cell cycle analysis revealed that ISAE triggered G2/M arrest in Jurkat cells in dose- and time-dependent manners. Elevation of annexin V-stained cells and caspase 3/7 activity suggested ISAE-induced apoptosis. Furthermore, ISAE alone could increase the phosphorylation of CDK1 at Y15 and activate the ATR/CHK1/Wee1/CDC25C signaling pathway. However, the addition of caffeine, a widely used ATR inhibitor to ISAE, reduced the phosphorylation of ATR, CHK1, and CDK1, as well as G2/M arrest in Jurkat cells. Moreover, increased phospho-H2A.X stained cells indicated the involvement of DNA damage in the anti-leukemic effect of ISAE. Finally, qualitative analysis using UPLC-tandem mass spectroscopy and molecular networking revealed that tryptanthrin was the most abundant organoheterocyclic metabolite in ISAE. At equivalent concentrations to ISAE, tryptanthrin induced G2/M arrest of Jurkat cells, which can be prevented by caffeine. CONCLUSIONS: ISAE causes G2/M arrest via activating ATR/CHK1/CDK1 pathway and tryptanthrin is one of the active components of ISAE. Our findings provide subtle support to the traditional use of I. suffruitcosa in leukemia management in folk medicine.


Assuntos
Indigofera , Leucemia , Humanos , Células Jurkat , Anexina A5 , Apoptose , Cafeína , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Componentes Aéreos da Planta , Extratos Vegetais/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia
7.
Anal Chem ; 95(38): 14341-14349, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37715702

RESUMO

Reporter gene assays are essential for high-throughput analysis, such as drug screening or determining downstream signaling activation/inhibition. However, use of this technology has been hampered by the high cost of the substrate (e.g., d-Luciferin (d-Luc)) in the most common firefly luciferase (FLuc) reporter gene assay. Although alternate luciferase is available worldwide, its substrate has remained expensive, and a more affordable option is still in demand. Here, we present a membrane-tethered horseradish peroxidase (mHRP), a new reporter system composed of a cell membrane expressing HRP that can preserve its enzymatic function on the cell surface, facilitates contact with HRP substrates (e.g., ABTS and TMB), and avoids the cell lysis process and the use of the high-priced luciferase substrate. An evaluation of the light signal sensitivity of mHRP compared to FLuc showed that both had comparable signal sensitivity. We also identified an extended substrate half-life of more than 5-fold that of d-Luc. Of note, this strategy provided a more stable detection signal, and the cell lysis process is not mandatory. Furthermore, with this strategy, we decreased the total amount of time taken for analysis and increased the time of detection limit of the reporter assay. Pricing analysis showed a one-third to one twenty-eighth price drop per single test of reporter assay. Given the convenience and stability of the mHRP reporter system, we believe that our strategy is suitable for use as an alternative to the luciferase reporter assay.


Assuntos
Bioensaio , Perfilação da Expressão Gênica , Membranas , Membrana Celular , Peroxidase do Rábano Silvestre , Luciferases de Vaga-Lume/genética
8.
Cancers (Basel) ; 15(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37627178

RESUMO

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is a malignant lymphoid tumor disease that is characterized by heterogeneity, but current treatment does not benefit all patients, which highlights the need to identify oncogenic genes and appropriate drugs. G9a is a histone methyltransferase that catalyzes histone H3 lysine 9 (H3K9) methylation to regulate gene function and expression in various cancers. METHODS: TCGA and GTEx data were analyzed using the GEPIA2 platform. Cell viability under drug treatment was assessed using Alamar Blue reagent; the interaction between G9a and niclosamide was assessed using molecular docking analysis; mRNA and protein expression were quantified in DLBCL cell lines. Finally, G9a expression was quantified in 39 DLBCL patient samples. RESULTS: The TCGA database analysis revealed higher G9a mRNA expression in DLBCL compared to normal tissues. Niclosamide inhibited DLBCL cell line proliferation in a time- and dose-dependent manner, reducing G9a expression and increasing p62, BECN1, and LC3 gene expression by autophagy pathway regulation. There was a correlation between G9a expression in DLBCL samples and clinical data, showing that advanced cancer stages exhibited a higher proportion of G9a-expressing cells. CONCLUSION: G9a overexpression is associated with tumor progression in DLBCL. Niclosamide effectively inhibits DLBCL growth by reducing G9a expression via the cellular autophagy pathway; therefore, G9a is a potential molecular target for the development of therapeutic strategies for DLBCL.

9.
Plants (Basel) ; 12(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631155

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a type of steatosis caused by excess lipids accumulating in the liver. The prevalence of NAFLD has increased annually due to modern lifestyles and a lack of adequate medical treatment. Thus, we were motivated to investigate the bioactive components of Formosan plants that could attenuate lipid droplet (LD) accumulation. In a series of screenings of 3000 methanolic extracts from the Formosan plant extract bank for anti-LD accumulation activity, the methanolic extract of aerial parts of Elaeagnus glabra Thunb. showed excellent anti-LD accumulation activity. E. glabra is an evergreen shrub on which only a few phytochemical and biological studies have been conducted. Here, one new flavonoid (1), two new triterpenoids (2 and 3), and 35 known compounds (4-38) were isolated from the ethyl acetate layer of aerial parts of E. glabra via a bioassay-guided fractionation process. Their structures were characterized by 1D and 2D NMR, UV, IR, and MS data. Among the isolated compounds, methyl pheophorbide a (37) efficiently reduced the normalized LD content to 0.3% with a concentration of 20 µM in AML12 cell lines without significant cytotoxic effects. 3-O-(E)-Caffeoyloleanolic acid (13) and methyl pheophorbide a (37) showed inhibitory effects on superoxide anion generation or elastase release in fMLP/CB-treated human neutrophils (IC50 < 3.0 µM); they displayed effects similar to those of the positive control, namely, LY294002. These findings indicate that E. glabra can be used for developing a new botanical drug for managing LD accumulation and against inflammation-related diseases.

10.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240198

RESUMO

Physalis plants are commonly used traditional medicinal herbs, and most of their extracts containing withanolides show anticancer effects. Physapruin A (PHA), a withanolide isolated from P. peruviana, shows antiproliferative effects on breast cancer cells involving oxidative stress, apoptosis, and autophagy. However, the other oxidative stress-associated response, such as endoplasmic reticulum (ER) stress, and its participation in regulating apoptosis in PHA-treated breast cancer cells remain unclear. This study aims to explore the function of oxidative stress and ER stress in modulating the proliferation and apoptosis of breast cancer cells treated with PHA. PHA induced a more significant ER expansion and aggresome formation of breast cancer cells (MCF7 and MDA-MB-231). The mRNA and protein levels of ER stress-responsive genes (IRE1α and BIP) were upregulated by PHA in breast cancer cells. The co-treatment of PHA with the ER stress-inducer (thapsigargin, TG), i.e., TG/PHA, demonstrated synergistic antiproliferation, reactive oxygen species generation, subG1 accumulation, and apoptosis (annexin V and caspases 3/8 activation) as examined by ATP assay, flow cytometry, and western blotting. These ER stress responses, their associated antiproliferation, and apoptosis changes were partly alleviated by the N-acetylcysteine, an oxidative stress inhibitor. Taken together, PHA exhibits ER stress-inducing function to promote antiproliferation and apoptosis of breast cancer cells involving oxidative stress.


Assuntos
Neoplasias da Mama , Endorribonucleases , Humanos , Feminino , Endorribonucleases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Apoptose , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Linhagem Celular Tumoral
11.
Viruses ; 15(4)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37112864

RESUMO

Dengue virus (DENV) infection is a serious global health issue as it causes severe dengue hemorrhagic fever and dengue shock syndrome. Since no approved therapies are available to treat DENV infection, it is necessary to develop new agents or supplements that can do this. In this study, grape seed proanthocyanidins extract (GSPE), which is widely consumed as a dietary supplement, dose-dependently suppressed the replication of four DENV serotypes. The inhibitory mechanism demonstrated that GSPE downregulated DENV-induced aberrant cyclooxygenase-2 (COX-2) expression, revealing that the inhibitory effect of the GSPE on DENV replication involved targeting DENV-induced COX-2 expression. Mechanistic studies on signaling regulation have demonstrated that GSPE significantly reduced COX-2 expression by inactivating NF-κB and ERK/P38 MAPK signaling activities. Administrating GSPE to DENV-infected suckling mice reduced virus replication, mortality, and monocyte infiltration of the brain. In addition, GSPE substantially reduced the expression of DENV-induced inflammatory cytokines associated with severe dengue disease, including tumor necrosis factor-α, nitric oxide synthase, interleukin (IL)-1, IL-6, and IL-8, suggesting that GSPE has potential as a dietary supplement to attenuate DENV infection and severe dengue.


Assuntos
Vírus da Dengue , Dengue , Dengue Grave , Camundongos , Animais , NF-kappa B/metabolismo , Ciclo-Oxigenase 2/genética , Vírus da Dengue/fisiologia , Dengue Grave/tratamento farmacológico , Replicação Viral
12.
Biol Direct ; 18(1): 9, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879344

RESUMO

BACKGROUND: Long-term consumption of an excessive fat and sucrose diet (Western diet, WD) has been considered a risk factor for metabolic syndrome (MS) and cardiovascular disease. Caveolae and caveolin-1 (CAV-1) proteins are involved in lipid transport and metabolism. However, studies investigating CAV-1 expression, cardiac remodeling, and dysfunction caused by MS, are limited. This study aimed to investigate the correlation between the expression of CAV-1 and abnormal lipid accumulation in the endothelium and myocardium in WD-induced MS, and the occurrence of myocardial microvascular endothelial cell dysfunction, myocardial mitochondrial remodeling, and damage effects on cardiac remodeling and cardiac function. METHODS: We employed a long-term (7 months) WD feeding mouse model to measure the effect of MS on caveolae/vesiculo-vacuolar organelle (VVO) formation, lipid deposition, and endothelial cell dysfunction in cardiac microvascular using a transmission electron microscopy (TEM) assay. CAV-1 and endothelial nitric oxide synthase (eNOS) expression and interaction were evaluated using real-time polymerase chain reaction, Western blot, and immunostaining. Cardiac mitochondrial shape transition and damage, mitochondria-associated endoplasmic reticulum membrane (MAM) disruption, cardiac function change, caspase-mediated apoptosis pathway activation, and cardiac remodeling were examined using TEM, echocardiography, immunohistochemistry, and Western blot assay. RESULTS: Our study demonstrated that long-term WD feeding caused obesity and MS in mice. In mice, MS increased caveolae and VVO formation in the microvascular system and enhanced CAV-1 and lipid droplet binding affinity. In addition, MS caused a significant decrease in eNOS expression, vascular endothelial cadherin, and ß-catenin interactions in cardiac microvascular endothelial cells, accompanied by impaired vascular integrity. MS-induced endothelial dysfunction caused massive lipid accumulation in the cardiomyocytes, leading to MAM disruption, mitochondrial shape transition, and damage. MS promoted brain natriuretic peptide expression and activated the caspase-dependent apoptosis pathway, leading to cardiac dysfunction in mice. CONCLUSION: MS resulted in cardiac dysfunction, remodeling by regulating caveolae and CAV-1 expression, and endothelial dysfunction. Lipid accumulation and lipotoxicity caused MAM disruption and mitochondrial remodeling in cardiomyocytes, leading to cardiomyocyte apoptosis and cardiac dysfunction and remodeling.


Assuntos
Cardiopatias , Síndrome Metabólica , Animais , Camundongos , Cavéolas , Caveolina 1/genética , Miócitos Cardíacos , Síndrome Metabólica/etiologia , Dieta Ocidental , Células Endoteliais , Remodelação Ventricular , Lipídeos
13.
Diabetes Metab Res Rev ; 39(4): e3618, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36731513

RESUMO

AIMS: To investigate whether metabolic syndrome (MetS) could predict renal outcome in patients with established chronic kidney disease (CKD). MATERIALS AND METHODS: We enroled 2500 patients with CKD stage 1-4 from the Integrated CKD care programme, Kaohsiung for delaying Dialysis (ICKD) prospective observational study. 66.9% and 49.2% patients had MetS and diabetes (DM), respectively. We accessed three clinical outcomes, including all-cause mortality, RRT, and 50% decline in estimated glomerular filtration rate events. RESULTS: The MetS score was positively associated with proteinuria, inflammation, and nutrition markers. In fully adjusted Cox regression, the hazard ratio (HR) (95% confidence interval) of MetS for composite renal outcome (renal replacement therapy, and 50% decline of renal function) in the DM and non-DM subgroups was 1.56 (1.15-2.12) and 1.31 (1.02-1.70), respectively, while that for all-cause mortality was 1.00 (0.71-1.40) and 1.27 (0.92-1.74). Blood pressure is the most important component of MetS for renal outcomes. In the 2 by 2 matrix, compared with the non-DM/non-MetS group, the DM/MetS group (HR: 1.62 (1.31-2.02)) and the non-DM/MetS group (HR: 1.33 (1.05-1.69)) had higher risks for composite renal outcome, whereas the DM/MetS group had higher risk for all-cause mortality (HR: 1.43 (1.09-1.88)). CONCLUSIONS: MetS could predict renal outcome in patients with CKD stage 1-4 independent of DM.


Assuntos
Diabetes Mellitus , Falência Renal Crônica , Síndrome Metabólica , Insuficiência Renal Crônica , Humanos , Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Falência Renal Crônica/complicações , Falência Renal Crônica/terapia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/epidemiologia , Rim/fisiologia , Diabetes Mellitus/epidemiologia , Taxa de Filtração Glomerular , Fatores de Risco
14.
ACS Omega ; 8(6): 5377-5392, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816691

RESUMO

Pathologic hyperreactive inflammatory responses occur when there is excessive activation of a proinflammatory NF-κB pathway and a reduced cytoprotective NRF2 cascade. The noncytotoxic, highly selective COX-2 inhibitory flavonol-enriched butanol fraction (UaB) from Uvaria alba (U. alba) was investigated for its inflammatory modulating potential by targeting NF-κB activation and NRF2 activity. Enzyme-linked immunosorbent assay was initially performed to measure levels of proinflammatory mediators [nitric oxide (NO), prostaglandin E2, and reactive oxygen species (ROS)] and cytokines [tumor necrosis factor-alpha (TNF-α), IL-1ß, and IL-6], followed by reverse transcription-polymerase chain reaction and western blotting to determine mRNA and protein expression, respectively. Using immunofluorescence staining combined with western blot analysis, the activation of NF-κB was further investigated. NRF2 activity was also measured using a luciferase reporter assay. UaB abrogated protein and mRNA expressions of inducible nitric oxide synthase (iNOS), COX-2, TNF-α, IL-1ß, and IL-6 in RAW 264.7 macrophages, thereby suppressing the production of proinflammatory mediators and cytokines. This was further validated when a concentration-dependent decrease in NO and ROS production was observed in zebrafish (Danio rerio) larvae. UaB also increased NRF2 activity in HaCaT/ARE cell line and attenuated NF-κB activation by inhibiting the nuclear translocation of transcription factor p65 in RAW 264.7 macrophages. Nontargeted LC-MS analysis of UaB revealed the presence of the flavonols quercitrin (1), quercetin (2), rutin (3), kaempferol (4), and kaempferol 3-O-rutinoside (5). Molecular docking indicates that major flavonol aglycones have high affinity toward COX-2 NSAID-binding sites, TNF-α, and TNF-α converting enzyme, while the glycosylated flavonoids showed strong binding toward iNOS and IKK-all possessing dynamic stability when performing molecular dynamics simulations at 140 ns. This is the first report to have elucidated the mechanistic anti-inflammatory potential of the Philippine endemic plant U. alba.

15.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36674768

RESUMO

Continuing chemical investigation of the Red Sea sponge Spongia sp. led to the isolation of four new 3,4-seco-3,19-dinorspongian diterpenoid lactones, secodinorspongins A-D (1-4), along with a classical spongian diterpenoid lactone, sponginolide (5). The chemical structures, including the absolute configurations of these compounds, were elucidated using the extensive spectroscopic study composed of 1D and 2D NMR data analyses, and a comparison between calculated-electronic-circular-dichroism (ECD) and experimental-circular-dichroism (CD) spectra. A plausible biosynthetic pathway of 1-4 was also proposed. Furthermore, the cytotoxicity, antibacterial and anti-inflammatory activities of 1-5 were evaluated. Compound 1 was found to exhibit inhibitory activity against the growth of Staphylococcus aureus (S. aureus), and 4 and 5 exhibited suppression of superoxide-anion generation and elastase release in fMLF/CB-induced human neutrophils.


Assuntos
Diterpenos , Poríferos , Animais , Humanos , Lactonas , Staphylococcus aureus , Estrutura Molecular , Poríferos/química , Diterpenos/química
16.
J Agric Food Chem ; 71(2): 1122-1131, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36597352

RESUMO

To look in-depth into the traditional Mexican truffle, this study investigated the phytochemical and pharmacological properties of field-collected corn galls and the fermentate of its pathogen Ustilago maydis MZ496986. Here, we established the chemical profiles of both materials via the gradient HPLC-UV method and successfully identified six previously unreported chemical entities, ustilagols A-F (1-6), and 17 known components. Compounds 3, 5, and 9 exhibited potent nitric oxide production inhibitory activities in murine brain microglial BV-2 cells (IC50 = 6.7 ± 0.5, 5.8 ± 0.9, and 3.9 ± 0.1 µM) without cytotoxic effects. DIMBOA (9) also attenuates lipopolysaccharide (LPS)-stimulated NF-κB activation in RAW 264.7 macrophages (IC50 = 58.1 ± 7.2 µM). Ustilagol G (7) showed potent antiplatelet aggregation in U46619-stimulated human platelets (IC50 = 16.5 ± 5.3 µM). These findings highlighted the potential of corn galls and U. maydis MZ496986 fermentate as functional foods for improving inflammation-related discomforts and vascular obstruction.


Assuntos
Basidiomycota , Ustilago , Animais , Camundongos , Humanos , Ustilago/genética , Fungos , Macrófagos , Zea mays/microbiologia
17.
Animals (Basel) ; 14(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38200804

RESUMO

Heat stress significantly undermines the poultry industry by escalating rates of morbidity and mortality and impairing growth performance. Our recent findings indicate that Prinsepiae Nux extract (PNE) effectively stimulates the Nrf2 signaling pathway, a vital element in cellular antioxidant stress responses. This study further explores the prospective benefits of supplementing PNE into poultry feed to enhance broiler growth in heat-stressed conditions. An Nrf2-luciferase reporter assay was developed in a chicken fibroblast cell line, demonstrating that PNE induces Nrf2 activity in a concentration-dependent manner. Real-time RT-PCR results showed that PNE intensifies the expression of Nrf2-responsive targets such as Ho1 and Nqo1 in chicken fibroblasts. A total of 160 one-day-old Arbor Acres broiler chicks were randomly assigned into four groups, each receiving a basal diet supplemented with either 0% (control), 0.1% PNE, 1% PNE, or commercial electrolyte for 35 days. Broilers were raised in an environment where the ambient temperature exceeded 30 °C for approximately seven hours each day, fluctuating between 26 and 34 °C, which is known to induce mild heat stress. The findings reveal that a 1% PNE supplement led to a significant decrease in the feed conversion ratio (FCR) compared to the control group. Moreover, chickens supplemented with 1% PNE exhibited a substantial increase in hepatic mRNA expression of antioxidant genes, such as Nqo1, Gclc, Sod2, Cat, and heat shock protein-related genes including Hsp90 and Hsf1, and a decrease in pro-inflammatory cytokine genes Il-6 and Il-1ß. Consequently, PNE holds potential as a feed supplement to strengthen the antioxidant defenses of broilers and build heat stress resilience in the poultry industry.

18.
Antioxidants (Basel) ; 11(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36139829

RESUMO

Ultraviolet B (UVB) is one of the most important environmental factors that cause extrinsic aging through increasing intracellular reactive oxygen species (ROS) production in the skin. Due to its protective roles against oxidative stress, nuclear factor erythroid-2-related factor (NRF2) has been traditionally considered as a target for skin aging prevention. Here, we identified the extract of Prinsepiae Nux, a top-grade drug listed in Shen Nong Ben Cao Jing, as a potent NRF2 activator by high-throughput screening. A bioassay-guided fractionation experiment revealed that NRF2-activating components were concentrated in the 90% methanol (MP) fraction. MP fraction significantly increased the expression of NRF2 and HO-1 protein and upregulated HO-1 and NQO1 mRNA expression in HaCaT cells. Moreover, MP fraction pre-treatment dramatically reversed UVB-induced depletion of NRF2 and HO-1, accumulation of intracellular ROS, NF-κB activation, and the upregulation of pro-inflammatory genes. Finally, the qualitative analysis using UPLC-tandem mass spectroscopy revealed the most abundant ion peak in MP fraction was identified as α-linolenic acid, which was further proved to activate NRF2 signaling. Altogether, the molecular evidence suggested that MP fraction has the potential to be an excellent source for the discovery of natural medicine to treat/prevent UVB-induced skin damage.

19.
Antioxidants (Basel) ; 11(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139887

RESUMO

Data regarding the effects of crude extract of Commelina plants in oral cancer treatment are scarce. This present study aimed to assess the proliferation-modulating effects of the Commelina sp. (MECO) methanol extract on oral cancer cells in culture, Ca9-22, and CAL 27. MECO suppressed viability to a greater extent in oral cancer cells than in normal cells. MECO also induced more annexin V, apoptosis, and caspase signaling for caspases 3/8/9 in oral cancer cells. The preferential antiproliferation and apoptosis were associated with cellular and mitochondrial oxidative stress in oral cancer cells. Moreover, MECO also preferentially induced DNA damage in oral cancer cells by elevating γH2AX and 8-hydroxyl-2'-deoxyguanosine. The oxidative stress scavengers N-acetylcysteine or MitoTEMPO reverted these preferential antiproliferation mechanisms. It can be concluded that MECO is a natural product with preferential antiproliferation effects and exhibits an oxidative stress-associated mechanism in oral cancer cells.

20.
Mar Drugs ; 20(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36005501

RESUMO

Three new 5,5,6,6,5-pentacyclic spongian diterpenes, spongenolactones A-C (1-3), were isolated from a Red Sea sponge Spongia sp. The structures of the new metabolites were elucidated by extensive spectroscopic analysis and the absolute configurations of 1-3 were determined on the basis of comparison of the experimental circular dichroism (CD) and calculated electronic circular dichroism (ECD) spectra. Compounds 1-3 are the first 5,5,6,6,5-pentacyclic spongian diterpenes bearing an ß-hydroxy group at C-1. These metabolites were assayed for their cytotoxic, antibacterial, and anti-inflammatory activities. All three compounds were found to exert inhibitory activity against superoxide anion generation in fMLF/CB-stimulated human neutrophils. Furthermore, 1 showed a higher activity against the growth of Staphylococcus aureus in comparison to 2.


Assuntos
Diterpenos , Poríferos , Animais , Diterpenos/química , Humanos , Oceano Índico , Estrutura Molecular , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA