Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717140

RESUMO

Encouraged by our observations of pronounced B7-H3 protein over-expression in many human solid tumors compared to healthy tissues, we focused on targeting B7-H3 with CAR T cells. We utilized a nanobody as the t B7-H3 targeting domain in our CAR construct to circumvent the stability issues associated with scFv-based domains. In efforts to expand patient access to CAR T cell therapy, we engineered our nanobody-based CAR into human Epstein-Barr Virus Specific T Cells (EBVSTs), offering a readily available off-the-shelf treatment. B7H3.CAR-armored EBVSTs demonstrated potent in vitro and in vivo activities against multiple B7-H3-positive human tumor cell lines and patient-derived xenograft models. Murine T cells expressing a murine equivalent of our B7H3.CAR exhibited no life-threatening toxicities in immunocompetent mice bearing syngeneic tumors. Further in vitro evaluation revealed that while human T, B and NK cells were unaffected by B7H3.CAR EBVSTs, monocytes were targeted due to upregulation of B7-H3. Such targeting of myeloid cells, which are key mediators of cytokine release syndrome (CRS), contributed to a low incidence of CRS in humanized mice after B7H3.CAR EBVST treatment. Notably, we showed that B7H3.CAR EBVSTs can target B7-H3 expressing myeloid-derived suppressor cells (MDSCs), thereby mitigating MDSC-driven immune suppression. In summary, our data demonstrate that our nanobody-based B7H3.CAR EBVSTs are effective as an off-the-shelf therapy for B7-H3 positive solid tumors. These cells also offer an avenue to modulate the immunosuppressive tumor microenvironment, highlighting their promising clinical potential in targeting solid tumors.

2.
Mol Cancer Ther ; 20(9): 1702-1712, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34158344

RESUMO

Acute myeloid leukemia (AML) is an aggressive disease with poor outcomes, overwhelmingly due to relapse. Minimal residual disease (MRD), defined as the persistence of leukemic cells after chemotherapy treatment, is thought to be the major cause of relapse. The origins of relapse in AML have been traced to rare therapy-resistant leukemic stem cells (LSCs) that are already present at diagnosis. Effective treatment strategies for long-term remission are lacking, as it has been difficult to eliminate LSCs with conventional therapy. Here, we proposed a new approach based on the chimeric antigen receptor (CAR)-directed T lymphocytes, targeting T-cell immunoglobulin, and mucin domain 3 (TIM-3) to treat MRD in patients with AML. TIM-3 is selected as the target because it is highly expressed on AML blasts and LSCs in most subtypes regardless of the patient's genetic characteristics and treatment course. Moreover, it is absent in the normal hematopoietic stem cells, granulocytes, naïve lymphocytes, and most normal nonhematopoietic tissues. Using a naïve human Fab phage display library, we isolated an anti-human TIM-3 antibody and designed a second-generation anti-TIM-3. Our anti-TIM-3 CAR T cells exhibit potent antileukemic activity against AML cell lines and primary AML blasts, and in the mouse models. More importantly, we demonstrate efficient killing of the primary LSCs directly isolated from the patients. Hence, eradication of the LSCs present in the MRD by anti-TIM-3 CAR T-cell therapy following the first-line treatment may improve the clinical outcomes of patients with AML.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A/imunologia , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Células-Tronco Neoplásicas/patologia , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioconjug Chem ; 29(1): 96-103, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29125731

RESUMO

High sensitivity imaging tools could provide a more holistic view of target antigen expression to improve the identification of patients who might benefit from cancer immunotherapy. We developed for immunoPET a novel recombinant human IgG1 (termed C4) that potently binds an extracellular epitope on human and mouse PD-L1 and radiolabeled the antibody with zirconium-89. Small animal PET/CT studies showed that 89Zr-C4 detected antigen levels on a patient derived xenograft (PDX) established from a non-small-cell lung cancer (NSCLC) patient before an 8-month response to anti-PD-1 and anti-CTLA4 therapy. Importantly, the concentration of antigen is beneath the detection limit of previously developed anti-PD-L1 radiotracers, including radiolabeled atezolizumab. We also show that 89Zr-C4 can specifically detect antigen in human NSCLC and prostate cancer models endogenously expressing a broad range of PD-L1. 89Zr-C4 detects mouse PD-L1 expression changes in immunocompetent mice, suggesting that endogenous PD-1/2 will not confound human imaging. Lastly, we found that 89Zr-C4 could detect acute changes in tumor expression of PD-L1 due to standard of care chemotherapies. In summary, we present evidence that low levels of PD-L1 in clinically relevant cancer models can be imaged with immunoPET using a novel recombinant human antibody.


Assuntos
Antígeno B7-H1/análise , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Imunoconjugados/química , Imunoglobulina G/química , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos/química , Zircônio/química , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Pulmão/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/química
5.
PLoS One ; 7(11): e49988, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185508

RESUMO

Melanoma is the most dangerous skin cancer due to its highly metastatic potential and resistance to chemotherapy. Currently, there is no effective treatment for melanoma once it is progressed to metastatic stage. Therefore, further study to elucidate the molecular mechanism underlying the metastasis of melanoma cells is urgently required for the improvement of melanoma treatment. In the present study, we found that diphthamide synthesis 3 (Dph3) is involved in the metastasis of B16F10 murine melanoma cells by insertional mutagenesis. We demonstrated that Dph3 disruption impairs the migration of B16F10 murine melanoma cells. The requirement of Dph3 in the migration of melanoma cells was further confirmed by gene silencing with siRNA in vitro. In corresponding to this result, overexpression of Dph3 significantly promoted the migratory ability of B16F10 and B16F0 melanoma cells. Moreover, down regulation of Dph3 expression in B16F10 melanoma cells strikingly inhibits their cellular invasion and metastasis in vivo. Finally, we found that Dph3 promotes melanoma migration and invasion through the AKT signaling pathway. To conclude, our findings suggest a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma.


Assuntos
Proteínas de Transporte/genética , Movimento Celular/genética , Inativação Gênica , Melanoma Experimental , Animais , Proteínas de Transporte/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Melanoma Experimental/enzimologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Proteínas Proto-Oncogênicas c-akt , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA