Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 143, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256649

RESUMO

BACKGROUND: Targeting the tumor microenvironment represents an emerging therapeutic strategy for cancer. Macrophages are an essential part of the tumor microenvironment. Macrophage polarization is modulated by mitochondrial metabolism, including oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and reactive oxygen species content. Isocitrate dehydrogenase 2 (IDH2), an enzyme involved in the TCA cycle, reportedly promotes cancer progression. However, the mechanisms through which IDH2 influences macrophage polarization and modulates tumor growth remain unknown. METHODS: In this study, IDH2-deficient knockout (KO) mice and primary cultured bone marrow-derived macrophages (BMDMs) were used. Both in vivo subcutaneous tumor experiments and in vitro co-culture experiments were performed, and samples were collected for analysis. Western blotting, RNA quantitative analysis, immunohistochemistry, and flow cytometry were employed to confirm changes in mitochondrial function and the resulting polarization of macrophages exposed to the tumor microenvironment. To analyze the effect on tumor cells, subcutaneous tumor size was measured, and growth and metastasis markers were identified. RESULTS: IDH2-deficient macrophages co-cultured with cancer cells were found to possess increased mitochondrial dysfunction and fission than wild-type BMDM. Additionally, the levels of M2-associated markers decreased, whereas M1-associated factor levels increased in IDH2-deficient macrophages. IDH2-deficient macrophages were predominantly M1. Tumor sizes in the IDH2-deficient mouse group were significantly smaller than in the wild-type mouse group. IDH2 deficiency in macrophages was associated with inhibited tumor growth and epithelial-mesenchymal transition. CONCLUSIONS: Our findings suggest that IDH2 deficiency inhibits M2 macrophage polarization and suppresses tumorigenesis. This study underlines the potential contribution of IDH2 expression in macrophages and tumor microenvironment remodeling, which could be useful in clinical cancer research.


Assuntos
Isocitrato Desidrogenase , Macrófagos , Mitocôndrias , Microambiente Tumoral , Animais , Humanos , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/genética , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo
2.
Curr Issues Mol Biol ; 46(8): 8658-8664, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39194727

RESUMO

Migrasomes, the newly discovered cellular organelles that form large vesicle-like structures on the retraction fibers of migrating cells, are thought to be involved in communication between neighboring cells, cellular content transfer, unwanted material shedding, and information integration. Although their formation has been described previously, the molecular mechanisms of migrasome biogenesis are largely unknown. Here, we developed a cell line that overexpresses GFP-tetraspanin4, enabling observation of migrasomes. To identify compounds that regulate migrasome activity in retinal pigment epithelial (RPE) cells, we screened a fecal chemical library and identified cadaverine, a biogenic amine, as a potent migrasome formation inducer. Compared with normal migrating cells, those treated with cadaverine had significantly more migrasomes. Putrescine, another biogenic amine, also increased migrasome formation. Trace amine-associated receptor 8 (TAAR8) depletion inhibited migrasome increase in cadaverine-treated RPE cells, and cadaverine also inhibited protein kinase A phosphorylation. In RPE cells, cadaverine triggers migrasome formation via a TAAR8-mediated protein kinase A signaling pathway.

3.
Curr Issues Mol Biol ; 46(7): 7411-7429, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39057081

RESUMO

Acanthoic acid, a diterpene isolated from the root bark of Acanthopanax koreanum Nakai, possesses diverse pharmacological activities, including anti-inflammatory, anti-diabetic, gastrointestinal protection, and cardiovascular protection. This study is the first to investigate the egg-hatching rates of Drosophila melanogaster affected by acanthoic acid. Notably, male flies supplemented with 10 µM acanthoic acid exhibited a strong increase in hatching rates compared with controls under adverse temperature conditions, suggesting a potential protective effect against environmental stressors. Molecular docking simulations revealed the binding affinities and specific interactions between acanthoic acid and proteins related to male infertility, including SHBG, ADAM17, and DNase I, with binding affinity values of -10.2, -6.8, and -5.8 kcal/mol, respectively. Following the docking studies, molecular dynamic simulations were conducted for a duration of 100 ns to examine the stability of these interactions. Additionally, a total binding energy analysis and decomposition analysis offered insights into the underlying energetic components and identified key contributing residues.

4.
Biochem Biophys Res Commun ; 727: 150311, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950494

RESUMO

In human Alzheimer's disease (AD), the aggregation of tau protein is considered a significant hallmark, along with amyloid-beta. The formation of neurofibrillary tangles due to aberrant phosphorylation of tau disrupts microtubule stability, leading to neuronal toxicity, dysfunction, and subsequent cell death. Nesfatin-1 is a neuropeptide primarily known for regulating appetite and energy homeostasis. However, the function of Nesfatin-1 in a neuroprotective role has not been investigated. In this study, we aimed to elucidate the effect of Nesfatin-1 on tau pathology using the Drosophila model system. Our findings demonstrate that Nesfatin-1 effectively mitigates the pathological phenotypes observed in Drosophila human Tau overexpression models. Nesfatin-1 overexpression rescued the neurodegenerative phenotypes in the adult fly's eye and bristle. Additionally, Nesfatin-1 improved locomotive behavior, neuromuscular junction formation, and lifespan in the hTau AD model. Moreover, Nesfatin-1 controls tauopathy by reducing the protein level of hTau. Overall, this research highlights the potential therapeutic applications of Nesfatin-1 in ameliorating the pathological features associated with Alzheimer's disease.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Nucleobindinas , Proteínas tau , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Nucleobindinas/metabolismo , Nucleobindinas/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Animais Geneticamente Modificados , Drosophila , Locomoção , Longevidade
5.
Mol Brain ; 17(1): 43, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003465

RESUMO

Dorsal switch protein 1(DSP1), a mammalian homolog of HMGB1, is firstly identified as a dorsal co-repressor in 1994. DSP1 contains HMG-box domain and functions as a transcriptional regulator in Drosophila melanogaster. It plays a crucial role in embryonic development, particularly in dorsal-ventral patterning during early embryogenesis, through the regulation of gene expression. Moreover, DSP1 is implicated in various cellular processes, including cell fate determination and tissue differentiation, which are essential for embryonic development. While the function of DSP1 in embryonic development has been relatively well-studied, its role in the adult Drosophila brain remains less understood. In this study, we investigated the role of DSP1 in the brain by using neuronal-specific DSP1 overexpression flies. We observed that climbing ability and life span are decreased in DSP1-overexpressed flies. Furthermore, these flies demonstrated neuromuscular junction (NMJ) defect, reduced eye size and a decrease in tyrosine hydroxylase (TH)-positive neurons, indicating neuronal toxicity induced by DSP1 overexpression. Our data suggest that DSP1 overexpression leads to neuronal dysfunction and toxicity, positioning DSP1 as a potential therapeutic target for neurodegenerative diseases.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Degeneração Neural , Junção Neuromuscular , Neurônios , Fenótipo , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Olho/patologia , Longevidade/genética , Degeneração Neural/patologia , Degeneração Neural/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Neurônios/metabolismo , Neurônios/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética
6.
Geriatr Gerontol Int ; 24(5): 486-492, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509017

RESUMO

AIM: We examined the novel role of NUCB1(Nucleobindin-1) associated with longevity in Drosophila melanogaster. METHODS: We measured the lifespan, metabolic phenotypes, and mRNA levels of Drosophila insulin-like peptides (Dilps), the protein level of phosphorylated AKT, and the localization of FOXO and its target gene expressions in the NUCB1 knockdown condition. RESULTS: NUCB1 knockdown flies show an extended lifespan and metabolic phenotypes such as increased circulating glucose level and starvation resistance. The mRNA expression levels of Dilps and the protein level of phosphorylated AKT, a downstream component of insulin signaling, were decreased in NUCB1 knockdown flies compared with the control flies. Also, the nuclear localization of FOXO and its target gene expressions, such as d4E-BP and InR, were elevated. CONCLUSIONS: The results show that NUCB1 knockdown flies exhibits an extended lifespan. These findings suggest that NUCB1 modulates longevity through insulin signaling in Drosophila. Geriatr Gerontol Int 2024; 24: 486-492.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Insulina , Longevidade , Transdução de Sinais , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Técnicas de Silenciamento de Genes , Insulina/metabolismo , Longevidade/fisiologia , Longevidade/genética , Transdução de Sinais/fisiologia
7.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257395

RESUMO

Autophagy is a pivotal biological process responsible for maintaining the homeostasis of intracellular organelles. Yet the molecular intricacies of peroxisomal autophagy (pexophagy) remain largely elusive. From a ubiquitin-related chemical library for screening, we identified several inhibitors of the Von Hippel-Lindau (VHL) E3 ligase, including VH298, thereby serving as potent inducers of pexophagy. In this study, we observed that VH298 stimulates peroxisomal degradation by ATG5 dependently and escalates the ubiquitination of the peroxisomal membrane protein ABCD3. Interestingly, the ablation of NBR1 is similar to the curtailed peroxisomal degradation in VH298-treated cells. We also found that the pexophagy induced by VH298 is impeded upon the suppression of gene expression by the translation inhibitor cycloheximide. Beyond VHL inhibition, we discovered that roxadustat, a direct inhibitor of HIF-α prolyl hydroxylase, is also a potent inducer of pexophagy. Furthermore, we found that VH298-mediated pexophagy is blocked by silencing HIF-1α. In conclusion, our findings suggest that VH298 promotes pexophagy by modulating VHL-mediated HIF-α transcriptional activity.


Assuntos
Autofagia , Ciclopropanos , Macroautofagia , Pirrolidinas , Tiazóis , Humanos , Células HeLa , Homeostase , Proteína Supressora de Tumor Von Hippel-Lindau/genética
8.
Cells ; 11(18)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36139416

RESUMO

Although autophagy regulates the quality and quantity of cellular compartments, the regulatory mechanisms underlying peroxisomal autophagy (pexophagy) remain largely unknown. In this study, we identified several BRD4 inhibitors, including molibresib, a novel pexophagy inducer, via chemical library screening. Treatment with molibresib promotes loss of peroxisomes selectively, but not mitochondria, ER, or Golgi apparatus in HeLa cells. Consistently, depletion of BRD4 expression also induced pexophagy in RPE cells. In addition, the inhibition of BRD4 by molibresib increased autophagic degradation of peroxisome ATG7-dependency. We further found that molibresib produced reactive oxygen species (ROS), which potentiates ATM activation. Inhibition of ROS or ATM suppressed the loss of peroxisomes in molibresib-treated cells. Taken together, our data suggest that inhibition of BRD4 promotes pexophagy by increasing ROS and ATM activation.


Assuntos
Macroautofagia , Proteínas Nucleares , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Peroxissomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
9.
Mol Cells ; 45(9): 640-648, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35993164

RESUMO

CD133, also known as prominin-1, was first identified as a biomarker of mammalian cancer and neural stem cells. Previous studies have shown that the prominin-like (promL) gene, an orthologue of mammalian CD133 in Drosophila, plays a role in glucose and lipid metabolism, body growth, and longevity. Because locomotion is required for food sourcing and ultimately the regulation of metabolism, we examined the function of promL in Drosophila locomotion. Both promL mutants and pan-neuronal promL inhibition flies displayed reduced spontaneous locomotor activity. As dopamine is known to modulate locomotion, we also examined the effects of promL inhibition on the dopamine concentration and mRNA expression levels of tyrosine hydroxylase (TH) and DOPA decarboxylase (Ddc), the enzymes responsible for dopamine biosynthesis, in the heads of flies. Compared with those in control flies, the levels of dopamine and the mRNAs encoding TH and Ddc were lower in promL mutant and pan-neuronal promL inhibition flies. In addition, an immunostaining analysis revealed that, compared with control flies, promL mutant and pan-neuronal promL inhibition flies had lower levels of the TH protein in protocerebral anterior medial (PAM) neurons, a subset of dopaminergic neurons. Inhibition of promL in these PAM neurons reduced the locomotor activity of the flies. Overall, these findings indicate that promL expressed in PAM dopaminergic neurons regulates locomotion by controlling dopamine synthesis in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Antígeno AC133/metabolismo , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Locomoção/genética , Mamíferos/metabolismo
10.
Exp Mol Med ; 54(4): 426-432, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388147

RESUMO

Cancer cachexia syndrome is a major cause of morbidity and mortality in cancer patients in the advanced stage. It is a devastating disorder characterized by nutritional impairment, weakness, and wasting, and it affects treatment success and quality of life. Two major symptoms of cancer cachexia are anorexia and weight loss. Weight loss in cachexia is not reversed through increased food intake, suggesting that anorexia and weight loss in cancer patients are regulated by independent molecular mechanisms. Although the wasting phenotype mostly occurs in skeletal muscle and adipose tissue, other organs, such as the brain, liver, pancreas, heart, and gut, are also involved in cachexia. Thus, cachexia is a multiorgan syndrome. Although the molecular basis of cancer cachexia-induced weight loss is known, the mechanism underlying anorexia is poorly understood. Here, we highlight our recent discovery of a new anorexia mechanism by which a tumor-derived humoral factor induces cancer anorexia by regulating feeding-related neuropeptide hormones in the brain. Furthermore, we elucidated the process through which anorexia precedes tissue wasting in cachexia. This review article aims to provide an overview of the key molecular mechanisms of anorexia and tissue wasting caused by cancer cachexia.


Assuntos
Caquexia , Neoplasias , Tecido Adiposo , Anorexia/etiologia , Anorexia/terapia , Caquexia/complicações , Caquexia/genética , Humanos , Neoplasias/complicações , Neoplasias/terapia , Qualidade de Vida
11.
J Lipid Atheroscler ; 11(1): 55-72, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35118022

RESUMO

OBJECTIVE: Glucagon in mammals and its homolog (adipokinetic hormone [AKH] in Drosophila melanogaster) are peptide hormones which regulate lipid metabolism by breaking down triglycerides. Although regulatory mechanisms of glucagon and AKH expression have been widely studied, post-transcriptional gene expression of glucagon has not been investigated thoroughly. In this study, we aimed to profile proteins binding with Gcg messenger RNA (mRNA) in mouse and Akh mRNA in Drosophila. METHODS: Drosophila Schneider 2 (S2) and mouse 3T3-L1 cell lysates were utilized for affinity pull down of Akh and Gcg mRNA respectively using biotinylated anti-sense DNA oligoes against target mRNAs. Mass spectrometry and computational network analysis revealed mRNA-interacting proteins residing in functional proximity. RESULTS: We observed that 1) 91 proteins interact with Akh mRNA from S2 cell lysates, 2) 34 proteins interact with Gcg mRNA from 3T3-L1 cell lysates. 3) Akh mRNA interactome revealed clusters of ribosomes and known RNA-binding proteins (RBPs). 4) Gcg mRNA interactome revealed mRNA-binding proteins including Plekha7, zinc finger protein, carboxylase, lipase, histone proteins and a cytochrome, Cyp2c44. 5) Levels of Gcg mRNA and its interacting proteins are elevated in skeletal muscles isolated from old mice compared to ones from young mice. CONCLUSION: Akh mRNA in S2 cells are under active translation in a complex of RBPs and ribosomes. Gcg mRNA in mouse precursor adipocyte is in a condition distinct from Akh mRNA due to biochemical interactions with a subset of RBPs and histones. We anticipate that our study contributes to investigating regulatory mechanisms of Gcg and Akh mRNA decay, translation, and localization.

12.
Cells ; 12(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36611940

RESUMO

Selective autophagy controls cellular homeostasis by degrading unnecessary or damaged cellular components. Melanosomes are specialized organelles that regulate the biogenesis, storage, and transport of melanin in melanocytes. However, the mechanisms underlying melanosomal autophagy, known as the melanophagy pathway, are poorly understood. To better understand the mechanism of melanophagy, we screened an endocrine-hormone chemical library and identified nalfurafine hydrochlorides, a κ-opioid receptor agonist, as a potent inducer of melanophagy. Treatment with nalfurafine hydrochloride increased autophagy and reduced melanin content in alpha-melanocyte-stimulating hormone (α-MSH)-treated cells. Furthermore, inhibition of autophagy blocked melanosomal degradation and reversed the nalfurafine hydrochloride-induced decrease in melanin content in α-MSH-treated cells. Consistently, treatment with other κ-opioid receptor agonists, such as MCOPPB or mianserin, inhibited excessive melanin production but induced autophagy in B16F1 cells. Furthermore, nalfurafine hydrochloride inhibited protein kinase A (PKA) activation, which was notably restored by forskolin, a PKA activator. Additionally, forskolin treatment further suppressed melanosomal degradation as well as the anti-pigmentation activity of nalfurafine hydrochloride in α-MSH-treated cells. Collectively, our data suggest that stimulation of κ-opioid receptors induces melanophagy by inhibiting PKA activation in α-MSH-treated B16F1 cells.


Assuntos
Melaninas , alfa-MSH , alfa-MSH/farmacologia , Colforsina , Melaninas/metabolismo , Receptores Opioides kappa/agonistas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Animais , Camundongos
13.
Biochem Biophys Res Commun ; 568: 95-102, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217014

RESUMO

Sarcopenia is a syndrome characterized by progressive loss of muscle mass and function during aging. Although mitochondrial dysfunction and related metabolic defects precede age-related changes in muscle, their contributions to muscle aging are still not well known. In this study, we used a Drosophila model to investigate the role of lipophorin receptors (LpRs), a Drosophila homologue of the mammalian very low-density lipoprotein receptor (VLDLR), in mitochondrial dynamics and muscle aging. Muscle-specific knockdown of LpR1 or LpR2 resulted in mitochondrial dysfunction and reduced proteostasis, which contributed to muscle aging. Activation of AMP-activated protein kinase (AMPK) ameliorated muscle dysfunction induced by LpR1 knockdown. These results suggest that LpR1/VLDLR is a novel key target that modulates age-dependent lipid remodeling and muscle homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Mitocôndrias/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Feminino , Técnicas de Silenciamento de Genes , Longevidade , Masculino , Mitocôndrias/genética , Renovação Mitocondrial , Receptores Citoplasmáticos e Nucleares/genética
14.
Nat Cell Biol ; 23(2): 172-183, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33558728

RESUMO

In patients with advanced-stage cancer, cancer-associated anorexia affects treatment success and patient survival. However, the underlying mechanism is poorly understood. Here, we show that Dilp8, a Drosophila homologue of mammalian insulin-like 3 peptide (INSL3), is secreted from tumour tissues and induces anorexia through the Lgr3 receptor in the brain. Activated Dilp8-Lgr3 signalling upregulated anorexigenic nucleobinding 1 (NUCB1) and downregulated orexigenic short neuropeptide F (sNPF) and NPF expression in the brain. In the cancer condition, the protein expression of Lgr3 and NUCB1 was significantly upregulated in neurons expressing sNPF and NPF. INSL3 levels were increased in tumour-implanted mice and INSL3-treated mouse hypothalamic cells showed Nucb2 upregulation and Npy downregulation. Food consumption was significantly reduced in intracerebrospinal INSL3-injected mice. In patients with pancreatic cancer, higher serum INSL3 levels increased anorexia. These results indicate that tumour-derived Dilp8/INSL3 induces cancer anorexia by regulating feeding hormones through the Lgr3/Lgr8 receptor in Drosophila and mammals.


Assuntos
Anorexia/metabolismo , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias/metabolismo , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Anorexia/etiologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Neoplasias Oculares/patologia , Comportamento Alimentar , Humanos , Hipotálamo/metabolismo , Insulina/sangue , Insulina/química , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Endogâmicos C57BL , Neoplasias/complicações , Neurônios/metabolismo , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/complicações , Proteínas/química , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
15.
Cell Death Dis ; 11(5): 365, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404863

RESUMO

Ciao1 is a component of the cytosolic iron-sulfur cluster assembly (CIA) complex along with MMS19 and MIP18. Xeroderma pigmentosum group D (XPD), a DNA helicase involved in regulation of cell cycle and transcription, is a CIA target for iron-sulfur (Fe/S) modification. In vivo function of Ciao1 and Xpd in developing animals has been rarely studied. Here, we reveal that Ciao1 interacts with Crumbs (Crb), Galla, and Xpd to regulate organ growth in Drosophila. Abnormal growth of eye by overexpressing Crb intracellular domain (Crbintra) is suppressed by reducing the Ciao1 level. Loss of Ciao1 or Xpd causes similar impairment in organ growth. RNAi knockdown of both Ciao1 and Xpd show similar phenotypes as Ciao1 or Xpd RNAi alone, suggesting their function in a pathway. Growth defects caused by Ciao1 RNAi are suppressed by overexpression of Xpd. Ciao1 physically interacts with Crbintra, Galla, and Xpd, supporting their genetic interactions. Remarkably, Xpd RNAi defects can also be suppressed by Ciao1 overexpression, implying a mutual regulation between the two genes. Ciao1 mutant clones in imaginal discs show decreased levels of Cyclin E (CycE) and death-associated inhibitor of apoptosis 1 (Diap1). Xpd mutant clones share the similar reduction of CycE and Diap1. Consequently, knockdown of Ciao1 and Xpd by RNAi show increased apoptotic cell death. Further, CycE overexpression is sufficient to restore the growth defects from Ciao1 RNAi or Xpd RNAi. Interestingly, Diap1 overexpression in Ciao1 mutant clones induces CycE expression, suggesting that reduced CycE in Ciao1 mutant cells is secondary to loss of Diap1. Taken together, this study reveals new roles of Ciao1 and Xpd in cell survival and growth through regulating Diap1 level during organ development.


Assuntos
DNA Helicases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Metalochaperonas/metabolismo , Xeroderma Pigmentoso/metabolismo , Animais , Citoplasma/metabolismo , Metalochaperonas/genética
16.
Front Cell Dev Biol ; 8: 32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117966

RESUMO

Aminoacyl-tRNA synthetases (ARSs), which are essential for protein translation, were recently shown to have non-translational functions in various pathological conditions including cancer. However, the molecular mechanism underlying the role of ARSs in cancer remains unknown. Here, we demonstrate that asparaginyl-tRNA synthetase (NRS) regulates Yorkie-mediated tumorigenesis by binding to the Hippo pathway component Salvador. NRS-RNAi and the NRS inhibitor tirandamycin B (TirB) suppressed Yorkie-mediated tumor phenotypes in Drosophila. Genetic analysis showed that NRS interacted with Salvador, and NRS activated Hippo target genes by regulating Yorkie phosphorylation. Biochemical analyses showed that NRS blocked Salvador-Hippo binding by interacting directly with Salvador, and TirB treatment inhibited NRS-Salvador binding. YAP target genes were upregulated in a mammalian cancer cell line with high expression of NRS, whereas TirB treatment suppressed cancer cell proliferation. These results indicate that NRS regulates tumor growth by interacting with Salvador in the Hippo signaling pathway.

17.
Mol Cells ; 43(3): 304-311, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31940717

RESUMO

Methionyl-tRNA synthetase (MRS) is essential for translation. MRS mutants reduce global translation, which usually increases lifespan in various genetic models. However, we found that MRS inhibited Drosophila reduced lifespan despite of the reduced protein synthesis. Microarray analysis with MRS inhibited Drosophila revealed significant changes in inflammatory and immune response genes. Especially, the expression of anti-microbial peptides (AMPs) genes was reduced. When we measured the expression levels of AMP genes during aging, those were getting increased in the control flies but reduced in MRS inhibition flies agedependently. Interestingly, in the germ-free condition, the maximum lifespan was increased in MRS inhibition flies compared with that of the conventional condition. These findings suggest that the lifespan of MRS inhibition flies is reduced due to the down-regulated AMPs expression in Drosophila.


Assuntos
Drosophila/genética , Longevidade/genética , Metionina tRNA Ligase/metabolismo , Animais
18.
Aging (Albany NY) ; 11(21): 9369-9387, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672931

RESUMO

Many studies have indicated that Korean red ginseng (KRG) has anti-inflammatory and anti-oxidative effects, thereby inducing many health benefits in humans. Studies into the longevity effects of KRG are limited and have provided contradictory results, and the molecular mechanism of lifespan extension by KRG is not elucidated yet. Herein, the longevity effect of KRG was investigated in Drosophila melanogaster by feeding KRG extracts, and the molecular mechanism of lifespan extension was elucidated by using longevity-related mutant flies. KRG extended the lifespan of Drosophila when administrated at 10 and 25 µg/mL, and the longevity benefit of KRG was not due to reduced feeding, reproduction, and/or climbing ability in fruit flies, indicating that the longevity benefit of KRG is a direct effect of KRG, not of a secondary artifact. Diet supplementation with KRG increased the lifespan of flies on a full-fed diet but not of those on a restricted diet, and the longevity effect of KRG was diminished by the mutation of dSir2, a deacetylase known to mediate the benefits of dietary restriction. Similarly, the longevity effect of KRG was mediated by the reduction of insulin/IGF-1 signaling. In conclusion, KRG extends the lifespan of Drosophila through Sir2 and insulin/IGF-1 signaling and has potential as an anti-aging dietary-restriction mimetic and prolongevity supplement.


Assuntos
Proteínas de Drosophila/metabolismo , Histona Desacetilases/metabolismo , Insulina/metabolismo , Longevidade/efeitos dos fármacos , Panax , Preparações de Plantas/uso terapêutico , Sirtuínas/metabolismo , Animais , Restrição Calórica , Drosophila melanogaster , Avaliação Pré-Clínica de Medicamentos , Feminino , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Fitoterapia , Preparações de Plantas/farmacologia , Estresse Fisiológico/efeitos dos fármacos
19.
J Gerontol A Biol Sci Med Sci ; 74(10): 1557-1563, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30590420

RESUMO

CD133, also called Prominin-1, is a biomarker for mammalian stem cells. It is involved in cell growth, development, and tumor biology. However, the function of CD133 at the organismal level has not been investigated. In this study, we found that prominin-like (promL) loss-of-function mutant flies show an extended life span and metabolic defects such as increased circulating carbohydrates, lipid storage, and starvation resistance. The messenger RNA expression levels of Drosophila insulin-like peptides (Dilps) were reduced in loss-of-function promL mutants. Furthermore, the level of phosphorylated AKT, a downstream component of insulin signaling, was lower in promL loss-of-function mutants than in the w- control flies. Importantly, the PromL protein is predominantly expressed in the pars intercerebralis region with insulin-producing cells of the adult brain. When we inhibited promL in insulin-producing cells, these flies showed an extended life span, metabolic defects, and reduced insulin signaling. These results indicate that the promL gene regulates longevity and glucose metabolism by controlling insulin signaling in Drosophila.


Assuntos
Antígeno AC133/fisiologia , Glucose/metabolismo , Insulina/metabolismo , Longevidade/fisiologia , Transdução de Sinais/fisiologia , Animais , Drosophila melanogaster , Modelos Animais
20.
Oncoscience ; 2(10): 821-2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26682262
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA