Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1387945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887281

RESUMO

Introduction: The standard treatment for preventing rejection in vascularized composite allotransplantation (VCA) currently relies on systemic immunosuppression, which exposes the host to well-known side effects. Locally administered immunosuppression strategies have shown promising results to bypass this hurdle. Nevertheless, their progress has been slow, partially attributed to a limited understanding of the essential mechanisms underlying graft rejection. Recent discoveries highlight the crucial involvement of innate immune components, such as neutrophil extracellular traps (NETs), in organ transplantation. Here we aimed to prolong graft survival through a tacrolimus-based drug delivery system and to understand the role of NETs in VCA graft rejection. Methods: To prevent off-target toxicity and promote graft survival, we tested a locally administered tacrolimus-loaded on-demand drug delivery system (TGMS-TAC) in a multiple MHC-mismatched porcine VCA model. Off-target toxicity was assessed in tissue and blood. Graft rejection was evaluated macroscopically while the complement system, T cells, neutrophils and NETs were analyzed in graft tissues by immunofluorescence and/or western blot. Plasmatic levels of inflammatory cytokines were measured using a Luminex magnetic-bead porcine panel, and NETs were measured in plasma and tissue using DNA-MPO ELISA. Lastly, to evaluate the effect of tacrolimus on NET formation, NETs were induced in-vitro in porcine and human peripheral neutrophils following incubation with tacrolimus. Results: Repeated intra-graft administrations of TGMS-TAC minimized systemic toxicity and prolonged graft survival. Nevertheless, signs of rejection were observed at endpoint. Systemically, there were no increases in cytokine levels, complement anaphylatoxins, T-cell subpopulations, or neutrophils during rejection. Yet, tissue analysis showed local infiltration of T cells and neutrophils, together with neutrophil extracellular traps (NETs) in rejected grafts. Interestingly, intra-graft administration of tacrolimus contributed to a reduction in both T-cellular infiltration and NETs. In fact, in-vitro NETosis assessment showed a 62-84% reduction in NETs after stimulated neutrophils were treated with tacrolimus. Conclusion: Our data indicate that the proposed local delivery of immunosuppression avoids off-target toxicity while prolonging graft survival in a multiple MHC-mismatch VCA model. Furthermore, NETs are found to play a role in graft rejection and could therefore be a potential innovative therapeutic target.


Assuntos
Sistemas de Liberação de Medicamentos , Armadilhas Extracelulares , Rejeição de Enxerto , Sobrevivência de Enxerto , Neutrófilos , Tacrolimo , Alotransplante de Tecidos Compostos Vascularizados , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/efeitos dos fármacos , Animais , Sobrevivência de Enxerto/efeitos dos fármacos , Suínos , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Tacrolimo/administração & dosagem , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Alotransplante de Tecidos Compostos Vascularizados/métodos , Imunossupressores/administração & dosagem , Linfócitos T/imunologia , Humanos , Aloenxertos Compostos/imunologia , Feminino
2.
Eur J Clin Invest ; 53(1): e13885, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36219492

RESUMO

Atherosclerosis, a lipid-driven inflammatory disease, is the main underlying cause of cardiovascular diseases (CVDs) both in men and women. Sex-related dimorphisms regarding CVDs and atherosclerosis were observed since more than a decade ago. Inflammatory mediators such as cytokines, but also endothelial dysfunction, vascular smooth muscle cell migration and proliferation lead to vascular remodelling but are differentially affected by sex. Each year a greater number of men die of CVDs compared with women and are also affected by CVDs at an earlier age (40-70 years old) while women develop atherosclerosis-related complications mainly after menopause (60+ years). The exact biological reasons behind this discrepancy are still not well-understood. From the numerous animal studies on atherosclerosis, only a few include both sexes and even less investigate and highlight the sex-specific differences that may arise. Endogenous sex hormones such as testosterone and oestrogen modulate the atherosclerotic plaque composition and the frequency of such plaques. In men, testosterone seems to act like a double-edged sword as its decrease with ageing correlates with an increased risk of atherosclerotic CVDs, while testosterone is also reported to promote inflammatory immune cell recruitment into the atherosclerotic plaque. In premenopausal women, oestrogen exerts anti-atherosclerotic effects, which decline together with its level after menopause resulting in increased CVD risk in ageing women. However, the interplay of sex hormones, sex-specific immune responses and other sex-related factors is still incompletely understood. This review highlights reported sex differences in atherosclerotic vascular remodelling and the role of endogenous sex hormones in this process.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Animais , Feminino , Masculino , Remodelação Vascular , Testosterona , Hormônios Esteroides Gonadais , Estrogênios
3.
Front Cardiovasc Med ; 9: 868934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600479

RESUMO

Atherosclerotic vascular disease remains the most common cause of ischemia, myocardial infarction, and stroke. Vascular function is determined by structural and functional properties of the arterial vessel wall, which consists of three layers, namely the adventitia, media, and intima. Key cells in shaping the vascular wall architecture and warranting proper vessel function are vascular smooth muscle cells in the arterial media and endothelial cells lining the intima. Pathological alterations of this vessel wall architecture called vascular remodeling can lead to insufficient vascular function and subsequent ischemia and organ damage. One major pathomechanism driving this detrimental vascular remodeling is atherosclerosis, which is initiated by endothelial dysfunction allowing the accumulation of intimal lipids and leukocytes. Inflammatory mediators such as cytokines, chemokines, and modified lipids further drive vascular remodeling ultimately leading to thrombus formation and/or vessel occlusion which can cause major cardiovascular events. Although it is clear that vascular wall remodeling is an elementary mechanism of atherosclerotic vascular disease, the diverse underlying pathomechanisms and its consequences are still insufficiently understood.

4.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471212

RESUMO

Small extracellular vesicles (EVs) are among the most frequently investigated EVs and play major roles in intercellular communication by delivering various cargo molecules to target cells. They could potentially represent an alternative delivery strategy to treat ocular toxoplasmosis, a parasitosis affecting the retinal pigment epithelium (RPE). To date, the uptake of human small EVs by RPE cells has never been reported. In this study, we report on the intracellular uptake of fluorescently labelled human urine and fibroblast-derived small EVs by human RPE cells. In summary, both dye-labelled urinary small EVs and small EVs obtained from fibroblasts stably expressing membrane-bound green fluorescent protein were successfully internalized by RPE cells as revealed by immunohistochemistry. In recipient ARPE19 cells, BODIPY-labelled small EVs were found in close vicinity to the parasite Toxoplasma gondii. Additionally, an ultrastructural method was enabled to distinguish between labelled exogenous and endogenous small EVs within target cells.


Assuntos
Vesículas Extracelulares/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transporte Biológico , Células Cultivadas , Vesículas Extracelulares/ultraestrutura , Células HEK293 , Humanos , Epitélio Pigmentado da Retina/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA