Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(21): 6550-6560, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35580311

RESUMO

Evaporation studies of water using classical molecular dynamics simulations are largely limited due to their high computational expense. This study addresses that issue by developing coarse-grained molecular dynamics models based on Morse potential. Models are optimized based on multi-temperature and at room temperature using machine learning techniques like Genetic Algorithm, Nelder-Mead algorithm, and Strength Pareto Evolutionary Algorithm. The multi-temperature-based model named as Morse-D is found to be more accurate than the single temperature model in representing the water properties at higher temperatures. Using this Morse-D water model, evaporation from hydrophilic nanopores with pore diameter varying from 2 to 5 nm is studied. Our results show that the critical diameter to initiate continuous evaporation at nanopores lies between 3 and 4 nm. A maximum heat flux of 21.3 kW/cm2 is observed for a pore diameter of 4.5 nm and a maximum mass flow rate of 16.2 ng/s for a pore diameter of 5 nm. The observed heat flux is an order of magnitude times larger than the currently reported values from experiments in the literature for water, which indicates that we need to focus on nanoscale evaporation to enhance the critical heat flux.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33981824

RESUMO

Computational models for simulating and predicting fibrin fiber fracture are important tools for studying bulk mechanical properties and mechanobiological response of fibrin networks in physiological conditions. In this work, we employed a new strategy to model the mechanical response of a single fibrin fiber using a collection of bundled protofibrils and modeled the time-dependent properties using discrete particle simulations. Using a systematic characterization of the parameters, this model can be used to mimic the elastic behavior of fibrin fibers accurately and also to simulate fibrin fiber fracture. In addition, a continuum model was modified and used to obtain the individual fibrin fiber fracture toughness properties. Using this model and the experimentally available fibrin mechanical properties, we predicted the range of fracture toughness (1 to k P a m ) values of a typical fibrin fiber of diameter 100 nm and its critical flaw size to rupture (~4 nm), both of which are not currently available in the literature. The models can be collectively used as a foundation for simulating the mechanical behavior of fibrin clots. Moreover, the tunable discrete mesoscopic model that was employed can be extended to simulate and estimate the mechanical properties of other biological or synthetic fibers.

3.
Polymers (Basel) ; 12(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471225

RESUMO

The multiscale mechanical behavior of individual fibrin fibers and fibrin clots wasmodeled by coupling atomistic simulation data and microscopic experimental data. We propose anew protofibril element composed of a nonlinear spring network, and constructed this based onmolecular simulations and atomic force microscopy results to simulate the force extension behaviorof fibrin fibers. This new network model also accounts for the complex interaction of protofibrilswith one another, the effects of the presence of a solvent, Coulombic attraction, and other bindingforces. The network model was formulated to simulate the force-extension mechanical behavior ofsingle fibrin fibers from atomic force microscopy experiments, and shows good agreement. Thevalidated fibrin fiber network model was then combined with a modified version of the Arruda-Boyce eight-chain model to estimate the force extension behavior of the fibrin clot at the continuumlevel, which shows very good correlation. The results show that our network model is able to predictthe behavior of fibrin fibers as well as fibrin clots at small strains, large strains, and close to the breakstrain. We used the network model to explain why the mechanical response of fibrin clots and fibrinfibers deviates from worm-like chain behavior, and instead behaves like a nonlinear spring.

4.
Comput Biol Chem ; 83: 107148, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31751883

RESUMO

The field of thrombosis and hemostasis is crucial for understanding and developing new therapies for pathologies such as deep vein thrombosis, diabetes related strokes, pulmonary embolisms, and hemorrhaging related diseases. In the last two decades, an exponential growth in studies related to fibrin clot formation using computational tools has been observed. Despite this growth, the complete mechanism behind thrombus formation and hemostasis has been long and rife with obstacles; however, significant progress has been made in the present century. The computational models and methods used in this context are diversified into different spatiotemporal scales, yet there is no single model which can predict both physiological and mechanical properties of fibrin clots. In this review, we list the major strategies employed by researchers in modeling fibrin clot formation using recent and existing computational techniques. This review organizes the computational strategies into continuum level, system level, discrete particle (DPD), and multi-scale methods. We also discuss strengths and weaknesses of various methods and future directions in which computational modeling of fibrin clots can advance.


Assuntos
Simulação por Computador , Fibrina/metabolismo , Fibrina/química , Hemostasia , Humanos , Trombose
5.
J Biomol Struct Dyn ; 37(5): 1270-1281, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29651930

RESUMO

Sickle cell disease is caused by the amino acid substitution of glutamic acid to valine, which leads to the polymerization of deoxygenated sickle hemoglobin (HbS) into long strands. These strands are responsible for the sickling of red blood cells (RBCs), making blood hyper-coagulable leading to an increased chance of vaso-occlusive crisis. The conformational changes in sickled RBCs traveling through narrow blood vessels in a highly viscous fluid are critical in understanding; however, there are few studies that investigate the origins of the molecular mechanical behavior of sickled RBCs. In this work, we investigate the molecular mechanical properties of HbS molecules. A mechanical model was used to estimate the directional stiffness of an HbS molecule and the results were compared to adult human hemoglobin (HbA). The comparison shows a significant difference in strength between HbS and HbA, as well as anisotropic behavior of the hemoglobin molecules. The results also indicated that the HbS molecule experienced more irreversible mechanical behavior than HbA under compression. Further, we have characterized the elastic and compressive properties of a double stranded sickle fiber using six HbS molecules, and it shows that the HbS molecules are bound to each other through strong inter-molecular forces.


Assuntos
Hemoglobina Falciforme/química , Fenômenos Mecânicos , Simulação de Dinâmica Molecular , Conformação Proteica , Algoritmos , Fenômenos Químicos , Humanos , Modelos Teóricos , Temperatura
6.
Clin Appl Thromb Hemost ; 24(9_suppl): 104S-116S, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30114949

RESUMO

Although in vivo studies have been conducted in the past to determine hyperglycemic effects and influence on clotting risk in patients with diabetes, the true extent of hyperglycemia on unstable and spontaneous clot formation remains highly debated. Factors such as increased glycation, elevated fibrinogen concentration, elevated prothrombin levels, and decreased plasminogen are known to influence fibrin conversion, clot morphology, and thrombus formation in these individuals. In this regard, the isolated effects of hyperglycemia on irregular fibrin clot formation were investigated in a controlled fibrinogen system. In this study, fibrin clot characteristic differences at 3 glucose concentrations were analyzed to determine the effects of glucose concentration on fibrinogen glycation and fibrin clot morphology using confocal microscopy, glycation quantification, molecular simulations, and image processing methods. Algorithms coupled with statistical analysis support in vivo findings that hyperglycemia increases fibrinogen glycation, with ensuing altered fibrin clot structure characteristics. Our experimental and molecular simulation results consistently show an increased glucose adsorption by fibrinogen with increased glucose concentration. Significant differences in clot structure characteristics were observed, and the results of this work can be used to further develop diagnostic tools for evaluating clotting risk in individuals with hypercoagulable and hyperglycemic conditions.


Assuntos
Fibrina/química , Glucose/química , Simulação de Dinâmica Molecular , Fibrina/metabolismo , Fibrina/ultraestrutura , Glucose/metabolismo , Glicosilação , Humanos , Hiperglicemia/metabolismo , Microscopia de Fluorescência
7.
Biomech Model Mechanobiol ; 17(5): 1389-1403, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29796957

RESUMO

The study on the polymerization of fibrinogen molecules into fibrin monomers and eventually a stable, mechanically robust fibrin clot is a persistent and enduring topic in the field of thrombosis and hemostasis. Despite many research advances in fibrin polymerization, the change in the structure of fibrin clots and its influence on the formation of a fibrous protein network are still poorly understood. In this paper, we develop a new computational method to simulate fibrin clot polymerization using dissipative particle dynamics simulations. With an effective combination of reactive molecular dynamics formularies and many body dissipative particle dynamics principles, we constructed the reactive dissipative particle dynamics (RDPD) model to predict the complex network formation of fibrin clots and branching of the fibrin network. The 340 kDa fibrinogen molecule is converted into a spring-bead coarse-grain system with 11 beads using a topology representing network algorithm, and using RDPD, we simulated polymerization and formation of the fibrin clot. The final polymerized structure of the fibrin clot qualitatively agrees with experimental results from the literature, and to the best of our knowledge this is the first molecular-based study that simulates polymerization and structure of fibrin clots.


Assuntos
Fibrina/química , Simulação de Dinâmica Molecular , Polimerização , Humanos
8.
Artigo em Inglês | MEDLINE | ID: mdl-29628543

RESUMO

Blood clots occur in the human body when they are required to prevent bleeding. In pathological states such as diabetes and sickle cell disease, blood clots can also form undesirably due to hypercoagulable plasma conditions. With the continued effort in developing fibrin therapies for potential life-saving solutions, more mechanical modeling is needed to understand the properties of fibrin structures with inclusions. In this study, a fibrin matrix embedded with magnetic micro particles (MMPs) was subjected to a magnetic field to determine the magnitude of the required force to create plastic deformation within the fibrin clot. Using finite element (FE) analysis, we estimated the magnetic force from an electromagnet at a sample space located approximately 3 cm away from the coil center. This electromagnetic force coupled with gravity was applied on a fibrin mechanical system with MMPs to calculate the stresses and displacements. Using appropriate coil parameters, it was determined that application of a magnetic field of 730 A/m on the fibrin surface was necessary to achieve an electromagnetic force of 36 nN (to engender plastic deformation).

9.
J Mol Model ; 24(5): 109, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29623504

RESUMO

Studies suggest that patients with deep vein thrombosis and diabetes often have hypercoagulable blood plasma, leading to a higher risk of thromboembolism formation through the rupture of blood clots, which may lead to stroke and death. Despite many advances in the field of blood clot formation and thrombosis, the influence of mechanical properties of fibrin in the formation of thromboembolisms in platelet-poor plasma is poorly understood. In this paper, we combine the concepts of reactive molecular dynamics and coarse-grained molecular modeling to predict the complex network formation of fibrin clots and the branching of fibrin monomers. The 340-kDa fibrinogen molecule was converted into a coarse-grained molecule with nine beads, and using our customized reactive potentials, we simulated the formation and polymerization process of a fibrin clot. The results show that higher concentrations of thrombin result in higher branch-point formation in the fibrin clot structure. Our results also highlight many interesting properties, such as the formation of thicker or thinner fibers depending on the thrombin concentration. To the best of our knowledge, this is the first successful molecular polymerization study of fibrin clots to focus on thrombin concentration.


Assuntos
Coagulação Sanguínea , Fibrina , Fibrinogênio , Simulação de Dinâmica Molecular , Trombina , Fibrina/química , Fibrina/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Humanos , Trombina/química , Trombina/metabolismo
10.
J Biomol Struct Dyn ; 36(6): 1417-1429, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28441918

RESUMO

We developed a new mechanical model for determining the compression and shear mechanical behavior of four different hemoglobin structures. Previous studies on hemoglobin structures have focused primarily on overall mechanical behavior; however, this study investigates the mechanical behavior of hemoglobin, a major constituent of red blood cells, using steered molecular dynamics (SMD) simulations to obtain anisotropic mechanical behavior under compression and shear loading conditions. Four different configurations of hemoglobin molecules were considered: deoxyhemoglobin (deoxyHb), oxyhemoglobin (HbO2), carboxyhemoglobin (HbCO), and glycated hemoglobin (HbA1C). The SMD simulations were performed on the hemoglobin variants to estimate their unidirectional stiffness and shear stiffness. Although hemoglobin is structurally denoted as a globular protein due to its spherical shape and secondary structure, our simulation results show a significant variation in the mechanical strength in different directions (anisotropy) and also a strength variation among the four different hemoglobin configurations studied. The glycated hemoglobin molecule possesses an overall higher compressive mechanical stiffness and shear stiffness when compared to deoxyhemoglobin, oxyhemoglobin, and carboxyhemoglobin molecules. Further results from the models indicate that the hemoglobin structures studied possess a soft outer shell and a stiff core based on stiffness.


Assuntos
Carboxihemoglobina/química , Hemoglobinas Glicadas/química , Hemoglobinas/química , Oxiemoglobinas/química , Anisotropia , Humanos , Simulação de Dinâmica Molecular , Pressão , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA