Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 29(Suppl 3): S33303, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841431

RESUMO

Significance: Photoacoustic imaging (PAI) promises to measure spatially resolved blood oxygen saturation but suffers from a lack of accurate and robust spectral unmixing methods to deliver on this promise. Accurate blood oxygenation estimation could have important clinical applications from cancer detection to quantifying inflammation. Aim: We address the inflexibility of existing data-driven methods for estimating blood oxygenation in PAI by introducing a recurrent neural network architecture. Approach: We created 25 simulated training dataset variations to assess neural network performance. We used a long short-term memory network to implement a wavelength-flexible network architecture and proposed the Jensen-Shannon divergence to predict the most suitable training dataset. Results: The network architecture can flexibly handle the input wavelengths and outperforms linear unmixing and the previously proposed learned spectral decoloring method. Small changes in the training data significantly affect the accuracy of our method, but we find that the Jensen-Shannon divergence correlates with the estimation error and is thus suitable for predicting the most appropriate training datasets for any given application. Conclusions: A flexible data-driven network architecture combined with the Jensen-Shannon divergence to predict the best training data set provides a promising direction that might enable robust data-driven photoacoustic oximetry for clinical use cases.


Assuntos
Redes Neurais de Computação , Oximetria , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Oximetria/métodos , Humanos , Oxigênio/sangue , Saturação de Oxigênio/fisiologia , Algoritmos
3.
Biomed Opt Express ; 13(7): 3893-3903, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991932

RESUMO

Optical-resolution photoacoustic microscopy (OR-PAM) has been widely used for imaging blood vessel and oxygen saturation of hemoglobin (sO2), providing high-resolution functional images of living animals in vivo. However, most of them require one or multiple bulky and costly pulsed lasers, hindering their applicability in preclinical and clinical settings. In this paper, we demonstrate a reflection-mode low-cost high-resolution OR-PAM system by using two cost-effective and compact laser diodes (LDs), achieving microvasculature and sO2 imaging with a high lateral resolution of ∼6 µm. The cost of the excitation sources has dramatically reduced by ∼20-40 times compared to that of the pulsed lasers used in state-of-the-art OR-PAM systems. A blood phantom study was performed to show a determination coefficient R 2 of 0.96 in linear regression analysis. Experimental results of in vivo mouse ear imaging show that the proposed dual-wavelength LD-based PAM system can provide high-resolution functional images at a low cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA