Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 168: 112120, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38677027

RESUMO

Foot and ankle joint models are widely used in the biomechanics community for musculoskeletal and finite element analysis. However, personalizing a foot and ankle joint model is highly time-consuming in terms of medical image collection and data processing. This study aims to develop and evaluate a framework for constructing a comprehensive 3D foot model that integrates statistical shape modeling (SSM) with free-form deformation (FFD) of internal bones. The SSM component is derived from external foot surface scans (skin measurements) of 50 participants, utilizing principal component analysis (PCA) to capture the variance in foot shapes. The derived surface shapes from SSM then guide the FFD process to accurately reconstruct the internal bone structures. The workflow accuracy was established by comparing three model-generated foot models against corresponding skin and bone geometries manually segmented and not part of the original training set. We used the top ten principal components representing 85 % of the population variation to create the model. For prediction validation, the average Dice similarity coefficient, Hausdorff distance error, and root mean square error were 0.92 ± 0.01, 2.2 ± 0.19 mm, and 2.95 ± 0.23 mm for soft tissues, and 0.84 ± 0.03, 1.83 ± 0.1 mm, and 2.36 ± 0.12 mm for bones, respectively. This study presents an efficient approach for 3D personalized foot model reconstruction via SSM generation of the foot surface that informs bone reconstruction based on FFD. The proposed workflow is part of the open-source Musculoskeletal Atlas Project linked to OpenSim and makes it feasible to accurately generate foot models informed by population anatomy, and suitable for rigid body analysis and finite element simulation.

2.
Front Bioeng Biotechnol ; 12: 1372669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572359

RESUMO

Introduction: Children's walking patterns evolve with age, exhibiting less repetitiveness at a young age and more variability than adults. Three-dimensional gait analysis (3DGA) is crucial for understanding and treating lower limb movement disorders in children, traditionally performed using Optical Motion Capture (OMC). Inertial Measurement Units (IMUs) offer a cost-effective alternative to OMC, although challenges like drift errors persist. Machine learning (ML) models can mitigate these issues in adults, prompting an investigation into their applicability to a heterogeneous pediatric population. This study aimed at 1) quantifying personalized and generalized ML models' performance for predicting gait time series in typically developed (TD) children using IMUs data, 2) Comparing random forest (RF) and convolutional neural networks (CNN) models' performance, 3) Finding the optimal number of IMUs required for accurate predictions. Methodology: Seventeen TD children, aged 6 to 15, participated in data collection involving OMC, force plates, and IMU sensors. Joint kinematics and kinetics (targets) were computed from OMC and force plates' data using OpenSim. Tsfresh, a Python package, extracted features from raw IMU data. Each target's ten most important features were input in the development of personalized and generalized RF and CNN models. This procedure was initially conducted with 7 IMUs placed on all lower limb segments and then performed using only two IMUs on the feet. Results: Findings suggested that the RF and CNN models demonstrated comparable performance. RF predicted joint kinematics with a 9.5% and 19.9% NRMSE for personalized and generalized models, respectively, and joint kinetics with an NRMSE of 10.7% for personalized and 15.2% for generalized models in TD children. Personalized models provided accurate estimations from IMU data in children, while generalized models lacked accuracy due to the limited dataset. Furthermore, reducing the number of IMUs from 7 to 2 did not affect the results, and the performance remained consistent. Discussion: This study proposed a promising personalized approach for gait time series prediction in children, involving an RF model and two IMUs on the feet.

3.
J Appl Biomech ; 39(5): 304-317, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607721

RESUMO

In this narrative review, we explore developments in the field of computational musculoskeletal model personalization using the Physiome and Musculoskeletal Atlas Projects. Model geometry personalization; statistical shape modeling; and its impact on segmentation, classification, and model creation are explored. Examples include the trapeziometacarpal and tibiofemoral joints, Achilles tendon, gastrocnemius muscle, and pediatric lower limb bones. Finally, a more general approach to model personalization is discussed based on the idea of multiscale personalization called scaffolds.


Assuntos
Tendão do Calcâneo , Modelagem Computacional Específica para o Paciente , Humanos , Criança , Músculo Esquelético/fisiologia , Articulação do Joelho , Modelos Estatísticos
4.
Artigo em Inglês | MEDLINE | ID: mdl-37516980

RESUMO

The purpose of this study was to develop a machine learning model to reconstruct time series kinematic and kinetic profiles of the ankle and knee joint across six different tasks using an ankle-mounted IMU. Four male collegiate basketball players performed repeated tasks, including walking, jogging, running, sidestep cutting, max-height jumping, and stop-jumping, resulting in a total of 102 movements. Ankle and knee flexion-extension angles and moments were estimated using motion capture and inverse dynamics and considered 'actual data' for the purpose of model fitting. Synchronous acceleration and angular velocity data were collected from right ankle-mounted IMUs. A time-series feature extraction model was used to determine a set of features used as input to a random forest regression model to predict the ankle and knee kinematics and kinetics. Five-fold cross-validation was performed to verify the model accuracy, and statistical parametric mapping was used to determine the difference between the predicted and experimental time series. The random forest regression model predicted the time-series profiles of the ankle and knee flexion-extension angles and moments with high accuracy (Kinematics: R2 ranged from 0.782 to 0.962, RMSE ranged from 2.19° to 11.58°; Kinetics: R2 ranged from 0.711 to 0.966, RMSE ranged from 0.10 Nm/kg to 0.41 Nm/kg). There were differences between predicted and actual time series for the knee flexion-extension moment during stop-jumping and walking. An appropriately trained feature-based regression model can predict time series knee and ankle joint angles and moments across a wide range of tasks using a single ankle-mounted IMU.

5.
Sci Rep ; 13(1): 5046, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977706

RESUMO

A combination of wearable sensors' data and Machine Learning (ML) techniques has been used in many studies to predict specific joint angles and moments. The aim of this study was to compare the performance of four different non-linear regression ML models to estimate lower-limb joints' kinematics, kinetics, and muscle forces using Inertial Measurement Units (IMUs) and electromyographys' (EMGs) data. Seventeen healthy volunteers (9F, 28 ± 5 years) were asked to walk over-ground for a minimum of 16 trials. For each trial, marker trajectories and three force-plates data were recorded to calculate pelvis, hip, knee, and ankle kinematics and kinetics, and muscle forces (the targets), as well as 7 IMUs and 16 EMGs. The features from sensors' data were extracted using the Tsfresh python package and fed into 4 ML models; Convolutional Neural Networks (CNN), Random Forest (RF), Support Vector Machine, and Multivariate Adaptive Regression Spline for targets' prediction. The RF and CNN models outperformed the other ML models by providing lower prediction errors in all intended targets with a lower computational cost. This study suggested that a combination of wearable sensors' data with an RF or a CNN model is a promising tool to overcome the limitations of traditional optical motion capture for 3D gait analysis.


Assuntos
Marcha , Dispositivos Eletrônicos Vestíveis , Humanos , Fenômenos Biomecânicos , Marcha/fisiologia , Aprendizado de Máquina , Músculos
6.
Sensors (Basel) ; 21(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34372377

RESUMO

(Background) Inertial Measurement Units (IMUs) provide a low-cost, portable solution to obtain functional measures similar to those captured with three-dimensional gait analysis, including spatiotemporal gait characteristics. The primary aim of this study was to determine the feasibility of a remote patient monitoring (RPM) workflow using ankle-worn IMUs measuring impact load, limb impact load asymmetry and knee range of motion in combination with patient-reported outcome measures. (Methods) A pilot cohort of 14 patients undergoing primary knee arthroplasty for osteoarthritis was prospectively enrolled. RPM in the community was performed weekly from 2 up to 6 weeks post-operatively using wearable IMUs. The following data were collected using IMUs: mobility (Bone Stimulus and cumulative impact load), impact load asymmetry and maximum knee flexion angle. In addition, scores from the Oxford Knee Score (OKS), EuroQol Five-dimension (EQ-5D) with EuroQol visual analogue scale (EQ-VAS) and 6 Minute Walk Test were collected. (Results) On average, the Bone Stimulus and cumulative impact load improved 52% (p = 0.002) and 371% (p = 0.035), compared to Post-Op Week 2. The impact load asymmetry value trended (p = 0.372) towards equal impact loading between the operative and non-operative limb. The mean maximum flexion angle achieved was 99.25° at Post-Operative Week 6, but this was not significantly different from pre-operative measurements (p = 0.1563). There were significant improvements in the mean EQ-5D (0.20; p = 0.047) and OKS (10.86; p < 0.001) scores both by 6 weeks after surgery, compared to pre-operative scores. (Conclusions) This pilot study demonstrates the feasibility of a reliable and low-maintenance workflow system to remotely monitor post-operative progress in knee arthroplasty patients. Preliminary data indicate IMU outputs relating to mobility, impact load asymmetry and range of motion can be obtained using commercially available IMU sensors. Further studies are required to directly correlate the IMU sensor outputs with patient outcomes to establish clinical significance.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/cirurgia , Projetos Piloto , Amplitude de Movimento Articular
7.
Scand J Med Sci Sports ; 31(2): 358-370, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33038047

RESUMO

Trunk motion is related to the performance and risk of injuries during dynamic sports motions. Optical motion capture is traditionally used to measure trunk motion during dynamic sports motions, but these systems are typically constrained to a laboratory environment. Inertial measurement units (IMUs) might provide a suitable alternative for measuring the trunk orientation during dynamic sports motions. The objective of the present study was to assess the accuracy of the three-dimensional trunk orientation measured using IMUs during dynamic sports motions and isolated anatomical trunk motions. The motions were recorded with two IMUs and an optical motion capture system (gold standard). Ten participants performed a total of 71 sports motions (19 golf swings, 15 one-handed ball throws, 19 tennis serves, and 18 baseball swings) and 125 anatomical trunk motions (42, 41, and 42 trials of lateral flexion, axial rotation, and flexion/extension, respectively). The root-mean-square differences between the IMU- and optical motion capture-based trunk angles were less than 5 degrees, and the similarity between the methods was on average across all trials "very good" to "excellent" (R ≥ 0.85; R2 ≥ 0.80). Across the dynamic sports motions, even higher measures of similarity were found (R ≥ 0.90; R2 ≥ 0.82). When aligned to the relevant segment, the current IMUs are a promising alternative to optical motion capture and previous presented IMU-based systems for the field-based measurement of the three-dimensional trunk orientation during dynamic sports motions and the anatomical trunk motions.


Assuntos
Movimentos dos Órgãos/fisiologia , Esportes/fisiologia , Tronco/fisiologia , Acelerometria , Adulto , Algoritmos , Pontos de Referência Anatômicos , Beisebol/fisiologia , Fenômenos Biomecânicos/fisiologia , Marcadores Fiduciais , Golfe/fisiologia , Humanos , Magnetometria , Masculino , Movimento/fisiologia , Pelve/fisiologia , Tênis/fisiologia , Tronco/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA