Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(44): 15474-15486, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37874355

RESUMO

An efficient, unique, and eco-friendly biogenic synthesis of single-crystalline δ-phase manganese oxide nanoparticles (MnO2 NPs) using Gliricidia sepium leaves (GSL) extract at room temperature has been revealed for the first time. The active chemicals present in the GSL extract were found to serve as both reducing and stabilizing agents. The catalyst shows an excellent surface area of 301.13 m2 g-1, a mean pore diameter of 4.01 nm, and 39.97% w/w of active metal content. The reactivity of the synthesized catalyst was demonstrated by achieving a one-pot synthesis of benzimidazoles and quinoxalines via an acceptorless dehydrogenative coupling strategy utilizing biorenewable alcohols. The release of hydrogen gas was observed as the only side product and proven by its successful utilization for alkene reduction which supports the mechanistic elucidation. The release of hydrogen gas as a useful byproduct highlights the scientific importance of the present methodology. Additionally, gram-scale synthesis and catalyst recyclability studies are deliberated. Importantly, the δ-MnO2 NP catalyst exhibited superior catalytic activity and high durability toward hydrogen evolution reaction in alkaline media, highlighting the dual use of the catalyst. The δ-MnO2 NPs attain the current density of 10 mA/cm2 at an overpotential of 154 mV with a Tafel slope of 119 mV/dec.

2.
Sensors (Basel) ; 22(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36433488

RESUMO

The functionalization of materials for ultrasensitive detection of heavy metal ions (HMIs) in the environment is crucial. Herewith, we have functionalized inexpensive and environmentally friendly Fe3O4 nanoparticles with D-valine (Fe3O4-D-Val) by a simple co-precipitation synthetic approach characterized by XRD, FE-SEM, and FTIR spectroscopy. The Fe3O4-D-Val sensor was used for the ultrasensitive detection of Cd+2, Pb+2, and Cu+2 in water samples. This sensor shows a very low detection limit of 11.29, 4.59, and 20.07 nM for Cd+2, Pb+2, and Cu+2, respectively. The detection limits are much lower than the values suggested by the world health Organization. The real water samples were also analyzed using the developed sensor.


Assuntos
Cádmio , Metais Pesados , Chumbo , Íons , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA