Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5906, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737275

RESUMO

The role of de novo evolved genes from non-coding sequences in regulating morphological differentiation between species/subspecies remains largely unknown. Here, we show that a rice de novo gene GSE9 contributes to grain shape difference between indica/xian and japonica/geng varieties. GSE9 evolves from a previous non-coding region of wild rice Oryza rufipogon through the acquisition of start codon. This gene is inherited by most japonica varieties, while the original sequence (absence of start codon, gse9) is present in majority of indica varieties. Knockout of GSE9 in japonica varieties leads to slender grains, whereas introgression to indica background results in round grains. Population evolutionary analyses reveal that gse9 and GSE9 are derived from wild rice Or-I and Or-III groups, respectively. Our findings uncover that the de novo GSE9 gene contributes to the genetic and morphological divergence between indica and japonica subspecies, and provide a target for precise manipulation of rice grain shape.


Assuntos
Traumatismos Craniocerebrais , Oryza , Oryza/genética , Códon de Iniciação , Evolução Biológica , Grão Comestível/genética
2.
PeerJ ; 9: e12099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567844

RESUMO

Oryza longistaminata, a perennial wild species, is widely distributed in the African continent. It has strong tolerance to biotic and abiotic stresses, and high biomass production on poor soils. Chlorophyll biosynthesis is important for photosynthesis in rice. However, the chlorophyll biosynthesis and related gene profiles of O. longistaminata and its descendants remained unclear. Here, the F1 generation of O. sativa and O. longistaminata were obtained. Then, the comparative analysis morphology, anatomical structure, and transcriptional regulatory networks of chlorophyll biosynthesis were detected and analyzed. Results showed that the F1 generation has obvious long awn, similar with that of the male parent. The purple color of the long awn is different from that of the male parent. Microstructural results showed that the flag leaves of F1 have large mesophyll cell gaps in the upper- and lower-positions, small mesophyll cell gaps in the middle position, and more chloroplasts. Increased chlorophyll content was also observed in the F1 generation. In the lower-position flag leaves, the total chlorophyll contents of F1 were 1.55 and 1.5 times those of O. sativa and O. longistaminata, respectively. POR, MgCH and HEMA1 showed higher expression levels than the other related genes selected in the chlorophyll biosynthesis pathway. The HEMA1 expression level in the middle-position flag leaves of O. longistaminata was the highest, and it was 2.83 and 2.51 times that of O. sativa and F1, respectively. The expression level of DVR gene in lower-position flag leaves of F1 were 93.16% and 95.06% lower than those of O. sativa and O. longistaminata, respectively. This study provided a potential reference for studying the photosynthesis and heterosis utilization of O. longistaminata.

3.
New Phytol ; 227(5): 1417-1433, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32433775

RESUMO

Plants maintain a dynamic balance between plant growth and stress tolerance to optimise their fitness and ensure survival. Here, we investigated the roles of a clade A type 2C protein phosphatase (PP2C)-encoding gene, OsPP2C09, in regulating the trade-off between plant growth and drought tolerance in rice (Oryza sativa L.). The OsPP2C09 protein interacted with the core components of abscisic acid (ABA) signalling and showed PP2C phosphatase activity in vitro. OsPP2C09 positively affected plant growth but acted as a negative regulator of drought tolerance through ABA signalling. Transcript and protein levels of OsPP2C09 were rapidly induced by exogenous ABA treatments, which suppressed excessive ABA signalling and plant growth arrest. OsPP2C09 transcript levels in roots were much higher than those in shoots under normal conditions. After ABA, polyethylene glycol and dehydration treatments, the accumulation rate of OsPP2C09 transcripts in roots was more rapid and greater than that in shoots. This differential expression between the roots and shoots may increase the plant's root-to-shoot ratio under drought-stress conditions. This study sheds new light on the roles of OsPP2C09 in coordinating plant growth and drought tolerance. In particular, we propose that OsPP2C09-mediated ABA desensitisation contributes to root elongation under drought-stress conditions in rice.


Assuntos
Oryza , Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
4.
Plant J ; 101(1): 112-121, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494982

RESUMO

Fluorescence in situ hybridization using probes based on oligonucleotides (oligo-FISH) is a useful tool for chromosome identification and karyotype analysis. Here we developed two oligo-FISH probes that allow the identification of each of the 12 pairs of chromosomes in rice (Oryza sativa). These two probes comprised 25 717 (green) and 25 215 (red) oligos (45 nucleotides), respectively, and generated 26 distinct FISH signals that can be used as a barcode to uniquely label each of the 12 pairs of rice chromosomes. Standard karyotypes of rice were established using this system on both mitotic and meiotic chromosomes. Moreover, dual-color oligo-FISH was used to characterize diverse chromosomal abnormalities. Oligo-FISH analyses using these probes in various wild Oryza species revealed that chromosomes from the AA, BB or CC genomes generated specific and intense signals similar to those in rice, while chromosomes with the EE genome generated less specific signals and the FF genome gave no signal. Together, the oligo-FISH probes we established will be a powerful tool for studying chromosome variations and evolution in the genus Oryza.


Assuntos
Cromossomos de Plantas/genética , Hibridização in Situ Fluorescente/métodos , Oryza/genética , Genoma de Planta/genética , Cariótipo
5.
Mol Plant ; 12(8): 1157-1166, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31181338

RESUMO

In rice grains, the Waxy (Wx) gene is responsible for the synthesis of amylose, the most important determinant for eating and cooking quality. The effects of several Wx alleles on amylose content and the taste of cooked rice have been elucidated. However, the relationship between artificial selection and the evolution of various Wx alleles as well as their distribution remain unclear. Here we report the identification of an ancestral allele, Wxlv, which dramatically affects the mouthfeel of rice grains by modulating the size of amylose molecules. We demonstrated that Wxlv originated directly from wild rice, and the three major Wx alleles in cultivated rice (Wxb, Wxa, and Wxin) differentiated after the substitution of one base pair at the functional sites. These data indicate that the Wxlv allele played an important role in artificial selection and domestication. The findings also shed light on the evolution of various Wx alleles, which have greatly contributed to improving the eating and cooking quality of rice.


Assuntos
Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
6.
Commun Biol ; 1: 84, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271965

RESUMO

The wild relatives of rice have adapted to different ecological environments and constitute a useful reservoir of agronomic traits for genetic improvement. Here we present the ~777 Mb de novo assembled genome sequence of Oryza granulata. Recent bursts of long-terminal repeat retrotransposons, especially RIRE2, led to a rapid twofold increase in genome size after O. granulata speciation. Universal centromeric tandem repeats are absent within its centromeres, while gypsy-type LTRs constitute the main centromere-specific repetitive elements. A total of 40,116 protein-coding genes were predicted in O. granulata, which is close to that of Oryza sativa. Both the copy number and function of genes involved in photosynthesis and energy production have undergone positive selection during the evolution of O. granulata, which might have facilitated its adaptation to the low light habitats. Together, our findings reveal the rapid genome expansion, distinctive centromere organization, and adaptive evolution of O. granulata.

7.
Theor Appl Genet ; 131(3): 637-648, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29299612

RESUMO

KEY MESSAGE: A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Mapeamento Cromossômico , Citocininas/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas , Oryza/crescimento & desenvolvimento , Fenótipo , Sementes/genética
8.
Mol Plant ; 11(2): 300-314, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29269023

RESUMO

Seed development in angiosperms requires a 2:1 maternal-to-paternal genome ratio (2m:1p) in the endosperm. When the ratio is disrupted, the seed development is impaired. Rice interploidy crosses result in endosperm failures, but the underlying molecular mechanisms remain unclear. Here, we report that the defective endosperm in rice interploidy crosses was associated with nonadditive expression of small RNAs and protein-coding genes. Interestingly, 24-nt small interfering RNAs were enriched in the 5' and 3' flanking sequences of nonadditively expressed genes in the interploidy crosses and were negatively associated with the expression of imprinted genes. Furthermore, some PRC2 family genes and DNA methylation-related genes including OsMET1b and OsCMT3a were upregulated in the 2×4 cross (pollinating a diploid "mother" with a tetraploid "father") but repressed in the reciprocal cross. These different epigenetic effects could lead to precocious or delayed cellularization during endosperm development. Notably, many endosperm-preferred genes, including starch metabolic and storage protein genes during grain filling, were found to be associated with DNA methylation or H3K27me3, which are repressed in both 2×4 and 4×2 crosses. WUSCHEL homeobox2 (WOX2)-like (WOX2L), an endosperm-preferred gene, was expressed specifically in the rice endosperm, in contrast to WOX2 expression in the Arabidopsis embryo. Disruption of WOX2L in transgenic rice by CRISPR/Cas9-mediated gene editing blocked starch and protein accumulation, resulting in seed abortion. In addition to gene repression, disrupting epigenetic process in the interploidy crosses also induced expression of stress-responsive genes. Thus, maintaining the 2m:1p genome ratio in the endosperm is essential for normal grain development in rice and other cereal crops.


Assuntos
Oryza/genética , Sementes/metabolismo , Epigenômica , Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Poliploidia , Sementes/crescimento & desenvolvimento
9.
Rice (N Y) ; 10(1): 34, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28730412

RESUMO

BACKGROUND: Rice plays an extremely important role in food safety because it feeds more than half of the world's population. Rice grain yield depends on biomass and the harvest index. An important strategy to break through the rice grain yield ceiling is to increase the biological yield. Therefore, genes associated with organ size are important targets for rice breeding. RESULTS: We characterized a rice mutant gns4 (grain number and size on chromosome 4) with reduced organ size, fewer grains per panicle, and smaller grains compared with those of WT. Map-based cloning indicated that the GNS4 gene, encoding a cytochrome P450 protein, is a novel allele of DWARF11 (D11). A single nucleotide polymorphism (deletion) in the promoter region of GNS4 reduced its expression level in the mutant, leading to reduced grain number and smaller grains. Morphological and cellular analyses suggested that GNS4 positively regulates grain size by promoting cell elongation. Overexpression of GNS4 significantly increased organ size, 1000-grain weight, and panicle size, and subsequently enhanced grain yields in both the Nipponbare and Wuyunjing7 (a high-yielding cultivar) backgrounds. These results suggest that GNS4 is key target gene with possible applications in rice yield breeding. CONCLUSION: GNS4 was identified as a positive regulator of grain number and grain size in rice. Increasing the expression level of this gene in a high-yielding rice variety enhanced grain yield. GNS4 can be targeted in breeding programs to increase yields.

10.
Genetics ; 201(4): 1591-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26434724

RESUMO

Rice (Oryza sativa) grain shape, which is controlled by quantitative trait loci (QTL), has a strong effect on yield production and quality. However, the molecular basis for grain development remains largely unknown. In this study, we identified a novel QTL, Slender grain on chromosome 7 (SLG7), that is responsible for grain shape, using backcross introgression lines derived from 9311 and Azucena. The SLG7 allele from Azucena produces longer and thinner grains, although it has no influence on grain weight and yield production. SLG7 encodes a protein homologous to LONGIFOLIA 1 and LONGIFOLIA 2, both of which increase organ length in Arabidopsis. SLG7 is constitutively expressed in various tissues in rice, and the SLG7 protein is located in plasma membrane. Morphological and cellular analyses suggested that SLG7 produces slender grains by longitudinally increasing cell length, while transversely decreasing cell width, which is independent from cell division. Our findings show that the functions of SLG7 family members are conserved across monocots and dicots and that the SLG7 allele could be applied in breeding to modify rice grain appearance.


Assuntos
Grão Comestível/genética , Genes de Plantas , Oryza/genética , Locos de Características Quantitativas , Arabidopsis/genética , Tamanho Celular , Mapeamento Cromossômico , Cromossomos de Plantas , Clonagem Molecular , Grão Comestível/anatomia & histologia , Variação Genética , Proteínas de Plantas/genética
12.
Chromosome Res ; 21(8): 725-37, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24077888

RESUMO

The centromere is a key chromosomal component for sister chromatid cohesion and is the site for kinetochore assembly and spindle fiber attachment, allowing each sister chromatid to faithfully segregate to each daughter cell during cell division. It is not clear what types of sequences act as functional centromeres and how centromere sequences are organized in Oryza brachyantha, an FF genome species. In this study, we found that the three classes of centromere-specific CentO-F satellites (CentO-F1, CentO-F2, and CentOF3) in O. brachyantha share no homology with the CentO satellites in Oryza sativa. The three classes of CentO-F satellites are all located within the chromosomal regions to which the spindle fibers attach and are characterized by megabase tandem arrays that are flanked by centromere-specific retrotransposons, CRR-F, in the O. brachyantha centromeres. Although these CentO-F satellites are quantitatively variable among 12 O. brachyantha centromeres, immunostaining with an antibody specific to CENH3 indicates that they are colocated with CENH3 in functional centromere regions. Our results demonstrate that the three classes of CentO-F satellites may be the major components of functional centromeres in O. brachyantha.


Assuntos
Centrômero/genética , Variação Genética , Genoma de Planta , Poaceae/genética , Sequência de Bases , Cromossomos de Plantas/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , DNA Satélite/genética , DNA Satélite/isolamento & purificação , Evolução Molecular , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Retroelementos , Alinhamento de Sequência , Análise de Sequência de DNA , Sequências de Repetição em Tandem
13.
PLoS One ; 8(9): e75299, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058671

RESUMO

Chlorophylls (Chls) are crucial for capturing light energy for photosynthesis. Although several genes responsible for Chl biosynthesis were characterized in rice (Oryza sativa), the genetic properties of the hydrogenating enzyme involved in the final step of Chl synthesis remain unknown. In this study, we characterized a rice light-induced yellow leaf 1-1 (lyl1-1) mutant that is hypersensitive to high-light and defective in the Chl synthesis. Light-shading experiment suggested that the yellowing of lyl1-1 is light-induced. Map-based cloning of LYL1 revealed that it encodes a geranylgeranyl reductase. The mutation of LYL1 led to the majority of Chl molecules are conjugated with an unsaturated geranylgeraniol side chain. LYL1 is the firstly defined gene involved in the reduction step from Chl-geranylgeranylated (Chl(GG)) and geranylgeranyl pyrophosphate (GGPP) to Chl-phytol (Chl(Phy)) and phytyl pyrophosphate (PPP) in rice. LYL1 can be induced by light and suppressed by darkness which is consistent with its potential biological functions. Additionally, the lyl1-1 mutant suffered from severe photooxidative damage and displayed a drastic reduction in the levels of α-tocopherol and photosynthetic proteins. We concluded that LYL1 also plays an important role in response to high-light in rice.


Assuntos
Clorofila/biossíntese , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Oryza/metabolismo , Oxirredutases/biossíntese , Proteínas de Plantas/biossíntese , Clorofila/genética , Indução Enzimática/genética , Indução Enzimática/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Oryza/genética , Oxirredução , Oxirredutases/genética , Proteínas de Plantas/genética , alfa-Tocoferol/metabolismo
14.
Chromosoma ; 120(1): 47-60, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20706730

RESUMO

While many studies have provided significant insight into homolog pairing during meiosis, information on non-homologous pairing is much less abundant. In the present study, fluorescence in situ hybridization (FISH) was used to investigate non-homologous pairing in haploid rice during meiosis. At pachytene, non-homologous chromosomes paired and formed synaptonemal complexes. FISH analysis data indicated that chromosome pairing could be grouped into three major types: (1) single chromosome paired fold-back as the univalent structure, (2) two non-homologous chromosomes paired as the bivalent structure, and (3) three or more non-homologous chromosomes paired as the multivalent structure. In the survey of 70 cells, 65 contained univalents, 45 contained bivalents, and 49 contained multivalent. Moreover, chromosomes 9 and 10 as well as chromosomes 11 and 12 formed non-homologous bivalents at a higher frequency than the other chromosomes. However, chiasma was always detected in the bivalent only between chromosomes 11 and 12 at diakinesis or metaphase I, indicating the pairing between these two chromosomes leads non-homologous recombination during meiosis. The synaptonemal complex formation between non-homologs was further proved by immunodetection of RCE8, PAIR2, and ZEP1. Especially, ZEP1 only loaded onto the paired chromosomes other than the un-paired chromosomes at pachytene in haploid.


Assuntos
Cromossomos de Plantas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Complexo Sinaptonêmico/metabolismo , Cromossomos de Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Complexo Sinaptonêmico/genética
15.
Theor Appl Genet ; 122(2): 365-72, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20938764

RESUMO

Photoperiod-thermo-sensitive genic male sterile (PTGMS) rice exhibits a number of desirable traits for hybrid rice production. The cloning genes responsible for PTGMS and those elucidating male sterility mechanisms and reversibility to fertility would be of great significance to provide a foundation to develop new male sterile lines. Guangzhan63S, a PTGMS line, is one of the most widely used indica two-line hybrid rice breeding systems in China. In this study, genetic analysis based on F(2) and BC(1)F(2) populations derived from a cross between Guangzhan63S and 1587, determined a single recessive gene controls male sterility in Guangzhan63S. Molecular marker techniques combined with bulked-segregant analysis (BSA) were used and located the target gene (named ptgms2-1) between two SSR markers RM12521 and RM12823. Fine mapping of the ptgms2-1 locus was conducted with 45 new Insertion-Deletion (InDel) markers developed between the RM12521 and RM12823 region, using 634 sterile individuals from F(2) and BC(1)F(2) populations. Ptgms2-1 was further mapped to a 50.4 kb DNA fragment between two InDel markers, S2-40 and S2-44, with genetic distances of 0.08 and 0.16 cM, respectively, which cosegregated with S2-43 located on the AP004039 BAC clone. Ten genes were identified in this region based on annotation results from the RiceGAAS system. A nuclear ribonuclease Z gene was identified as the candidate for the ptgms2-1 gene. This result will facilitate cloning the ptgms2-1 gene. The tightly linked markers for the ptgms2-1 gene locus will further provide a useful tool for marker-assisted selection of this gene in rice breeding programs.


Assuntos
Genes de Plantas , Oryza/genética , Infertilidade das Plantas , Ribonucleases/genética , Sequência de Bases , China , Mapeamento Cromossômico , Segregação de Cromossomos , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Cruzamentos Genéticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Oryza/enzimologia , Oryza/fisiologia , Fotoperíodo , Ribonucleases/metabolismo
16.
Chromosome Res ; 17(7): 863-72, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19757105

RESUMO

During sexual propagation of primary trisomic 8, chromosome 8 breaks in some rice plants, resulting in a telotrisomic (2n+.8S) line. In this study, we observed that the extra short arm of chromosome 8 (.8S) can easily be lost in the telotrisomic, and we determined by fluorescence in-situ hybridization (FISH) analysis that the centromeric region of the extra .8S did not contain the rice centromeric satellite repeat (CentO) and centromere-specific retrotransposon (CRR); however, the extra .8S contained part of the CentO and CRR sequences in the initially preserved telotrisomic line. We confirmed by real-time quantitative PCR (RQ-PCR) analysis that the original functional centromere of the extra .8S was lost. Using both FISH and RQ-PCR, the breakage point of the extra .8S was found within the BAC clone a0070J19 sequence containing the first part of the short arm near the centromere region of chromosome 8 but without any CentO or CRR sequences. However, part of the DNA sequence within the a0070J19 BAC clone played a role in the new functional centromere, contributing to the morphological variations by asexually propagated plants of rice telotrisomics in the field. We conclude that CENH3, a key element in the eukaryotic kinetochore, may not always bind properly with the new functional centromere, resulting in loss of the extra .8S during mitosis and the chromosome numbers returning to diploid levels in subsequent generations.


Assuntos
Centrômero , Cromossomos de Plantas , DNA Satélite/genética , Oryza/genética , Cromossomos Sexuais , Hibridização in Situ Fluorescente , Mitose , Oryza/anatomia & histologia , Oryza/citologia , Reação em Cadeia da Polimerase
17.
Genetics ; 183(1): 315-24, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19546322

RESUMO

Rice plant architecture is an important agronomic trait and a major determinant in high productivity. Panicle erectness is the preferred plant architecture in japonica rice, but the molecular mechanism underlying domestication of the erect panicle remains elusive. Here we report the map-based cloning of a major quantitative trait locus, qPE9-1, which plays an integral role in regulation of rice plant architecture including panicle erectness. The R6547 qPE9-1 gene encodes a 426-amino-acid protein, homologous to the keratin-associated protein 5-4 family. The gene is composed of three Von Willebrand factor type C domains, one transmembrane domain, and one 4-disulfide-core domain. Phenotypic comparisons of a set of near-isogenic lines and transgenic lines reveal that the functional allele (qPE9-1) results in drooping panicles, and the loss-of-function mutation (qpe9-1) leads to more erect panicles. In addition, the qPE9-1 locus regulates panicle and grain length, grain weight, and consequently grain yield. We propose that the panicle erectness trait resulted from a natural random loss-of-function mutation for the qPE9-1 gene and has subsequently been the target of artificial selection during japonica rice breeding.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Deleção de Genes , Oryza/genética , Locos de Características Quantitativas/genética , Cruzamento , Clonagem Molecular , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Genes de Plantas , Dados de Sequência Molecular , Oryza/fisiologia , Fenótipo , Plantas Geneticamente Modificadas , Seleção Genética
18.
Yi Chuan ; 29(7): 851-8, 2007 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-17646152

RESUMO

Centromeres play an important role in ensuring the correct segregation and transmission of chromosome during mitosis and meiosis in eukaryotes. In this research, we constructed five BAC libraries for diploid wild rice with different genomes. Together with the technique of colony blot hybridization and fluorescence in situ hybridization (FISH), centromere-related BAC clones were screened and characterized from different genomes. Meanwhile, co-hybridization was detected between these clones and the five genomes. The results from this study demonstrated that: (1) there were centromere-specific satellite repeat in Oryza officinalis (CC genome) and O. brachyantha (FF genome), respectively, and centromere-specific CRR-related sequence was found in O. brachyantha; (2) homology sequences of CentO and CRR of O. sativa (AA genome) were detected on all centromeres of O. glaberrima (AA genome), O. punctata (BB genome) and O. australiensis (EE genome); And (3) the two somatic chromosomes of O. officinalis comprised of homology sequences of CentO satellites as revealed FISH analysis probed with RCS2. Homology sequences of CRR of O. sativa were also detected on all centromeres of O. officinalis. The results provided a foundation toward cloning the centromeric sequences from different genomes of genus Oryza, studying centromere organization and evolution of different genome, analyzing the relationship between centromeric structure and function among different genome.


Assuntos
Centrômero/genética , Cromossomos Artificiais Bacterianos/genética , Genoma de Planta/genética , Oryza/genética , Clonagem Molecular , Biblioteca Genômica , Hibridização in Situ Fluorescente
19.
Plant Physiol ; 139(1): 306-15, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16113220

RESUMO

Centromeres are required for faithful segregation of chromosomes in cell division. It is not clear what kind of sequences act as functional centromeres and how centromere sequences are organized in Oryza punctata, a BB genome species. In this study, we found that the CentO centromeric satellites in O. punctata share high homology with the CentO satellites in O. sativa. The O. punctata centromeres are characterized by megabase tandem arrays that are flanked by centromere-specific retrotransposons. Immunostaining with an antibody specific to CENH3 indicates that the 165-bp CentO satellites are the major component for functional centromeres. Moreover, both strands of CentO satellites are highly methylated and transcribed and produce small interfering RNA, which may be important for the maintenance of centromeric heterochromatin and centromere function.


Assuntos
Centrômero/genética , DNA de Plantas/genética , DNA Satélite/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Transcrição Gênica/genética , Sequência de Bases , Imunoprecipitação da Cromatina , Metilação de DNA , Genoma de Planta , Dados de Sequência Molecular , Oryza/citologia , Homologia de Sequência do Ácido Nucleico , Sequências de Repetição em Tandem
20.
Yi Chuan Xue Bao ; 30(8): 711-6, 2003 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-14682238

RESUMO

Appearance of rice grain represents a major character of rice quality in many rice-producing areas of the world, especially in hybrid rice production in China. In this study, we conducted a molecular marker-based genetic analysis of the traits that are determinants of the appearance quality of rice grains, including grain length, grain width and grain shape (measured as grain length to grain width ratio). Two typical indica/japonica varieties Balilla and Nantehao(NTH) were selected to construct Balilla/NTH//Balilla backcross population containing 142 individuals. In the population, grain length, grain width and grain shape all conform to the normal distribution with certain transgressive segregation. It can be deduced that all of three traits were controlled by some quantitative trait loci (QTLs). In order to explore the QTLs effect, number and location, a linkage map consisting of 108 SSR markers based on the backcross population was constructed, and QTLs mapping was carried out for grain length, grain width and grain shape. A QTL, qGL-12, was detected for grain length at the interval RM101-RM270 on chromosome 12, its additive effect was 0.26 mm, and can explain 16.7% genetic variation. As for grain width trait, two QTLs were found, qGW-2 located at RM154-RM211 interval on chromosome 2, and qGW-3 at interval RM257-RM175 on chromosome 3, accounting for 11.5% and 16.6% genetic variation, respectively. The alleles at qGW-2 and qGW-3 from parent Balilla can increase grain width by 0.10 mm and 0.12 mm. For grain shape, 3 QTLs, qLW-2, qLW-6 and qLW-7 were found, located on chromosome 2, 6, and 7, respectively. qLW-2 and qLW-7 had positive effect, and they can explain 12.7% and 18.3% genetic variation, while qLW-6 had negative effect and contributed 11.5% genetic variation to the backcross population. The prospects of application of linkage relationship between SSR marker and QTLs in marker based selection (MAS) in rice breeding, and the improvement of grain shape and rice appearance quality were discussed.


Assuntos
Cromossomos de Plantas/genética , Oryza/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Endogamia , Repetições de Microssatélites , Oryza/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA