Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 40(1): 26, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691186

RESUMO

Copper ionophore NSC319726 has attracted researchers' attention in treating diseases, particularly cancers. However, its potential effects on male reproduction during medication are unclear. This study aimed to determine whether NSC319726 exposure affected the male reproductive system. The reproductive toxicity of NSC319726 was evaluated in male mice following a continuous exposure period of 5 weeks. The result showed that NSC319726 exposure caused testis index reduction, spermatogenesis dysfunction, and architectural damage in the testis and epididymis. The exposure interfered with spermatogonia proliferation, meiosis initiation, sperm count, and sperm morphology. The exposure also disturbed androgen synthesis and blood testis barrier integrity. NSC319726 treatment could elevate the copper ions in the testis to induce cuproptosis in the testis. Copper chelator rescued the elevated copper ions in the testis and partly restored the spermatogenesis dysfunction caused by NSC319726. NSC319726 treatment also decreased the level of retinol dehydrogenase 10 (RDH10), thereby inhibiting the conversion of retinol to retinoic acid, causing the inability to initiate meiosis. Retinoic acid treatment could rescue the meiotic initiation and spermatogenesis while not affecting the intracellular copper ion levels. The study provided an insight into the bio-safety of NSC319726. Retinoic acid could be a potential therapy for spermatogenesis impairment in patients undergoing treatment with NSC319726.


Assuntos
Cobre , Espermatogênese , Testículo , Tretinoína , Masculino , Animais , Espermatogênese/efeitos dos fármacos , Tretinoína/farmacologia , Cobre/toxicidade , Camundongos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Meiose/efeitos dos fármacos , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Epididimo/patologia
2.
Discov Oncol ; 15(1): 73, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478152

RESUMO

Polypeptide N-Acetylgalactosaminyltransferase (GALNTs) are critical enzymes that initiate mucin type-O glycosylation, and are closely associated with the occurrence and development of multiple cancers. However, the significance of GALNT2 in clear cell renal cell carcinoma (ccRCC) progression remains largely undetermined. Based on public multi-omics analysis, GALNT2 was strongly elevated in ccRCC versus adjoining nontumor tissues, and it displayed a relationship with poor overall survival (OS) of ccRCC patients. In addition, GALNT2 over-expression accelerated proliferation of renal cancer cell (RCC) lines. In contrast, GALNT2 knockdown using shRNAs suppressed cell proliferation, and this was rescued by LATS2 knockdown. Similarly, GALNT2 deficiency enhanced p-LATS2/LATS2 expression. LATS2 is activated by phosphorylation (p-LATS2) and, in turn, phosphorylate the downstream substrate protein YAP. Phosphorylated YAP (p-YAP) stimulated its degradation and cytoplasmic retention, as it was unable to translocate to the nucleus. This resulted in reduced cell proliferation. Subsequently, we explored the upstream miRNAs of GALNT2. Using dual luciferase reporter assay, we revealed that miR-139-5p interacted with the 3' UTR of GALNT2. Low miR-139-5p expression was associated with worse ccRCC patient outcome. Based on our experiments, miR-139-5p overexpression inhibited RCC proliferation, and this phenotype was rescued by GALNT2 overexpression. Given these evidences, the miR-139-5p-GALNT2-LATS2 axis is critical for RCC proliferation, and it is an excellent candidate for a new therapeutic target in ccRCC.

3.
Proc Natl Acad Sci U S A ; 105(13): 4987-92, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18362353

RESUMO

The surface uplift history of the Tibetan Plateau and Himalaya is among the most interesting topics in geosciences because of its effect on regional and global climate during Cenozoic time, its influence on monsoon intensity, and its reflection of the dynamics of continental plateaus. Models of plateau growth vary in time, from pre-India-Asia collision (e.g., approximately 100 Ma ago) to gradual uplift after the India-Asia collision (e.g., approximately 55 Ma ago) and to more recent abrupt uplift (<7 Ma ago), and vary in space, from northward stepwise growth of topography to simultaneous surface uplift across the plateau. Here, we improve that understanding by presenting geologic and geophysical data from north-central Tibet, including magnetostratigraphy, sedimentology, paleocurrent measurements, and (40)Ar/(39)Ar and fission-track studies, to show that the central plateau was elevated by 40 Ma ago. Regions south and north of the central plateau gained elevation significantly later. During Eocene time, the northern boundary of the protoplateau was in the region of the Tanggula Shan. Elevation gain started in pre-Eocene time in the Lhasa and Qiangtang terranes and expanded throughout the Neogene toward its present southern and northern margins in the Himalaya and Qilian Shan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA