Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 12: 1788-1797, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829886

RESUMO

Benzo[1,2-b:4,5-b']dithiophene (BDT) is an excellent building block for constructing π-conjugated molecules for the use in organic solar cells. In this paper, four 4,8-bis(5-alkyl-2-thienyl)benzo[1,2-b:4,5-b']dithiophene (TBDT)-containing A-π-D-π-A-type small molecules (COOP-nHT-TBDT, n = 1, 2, 3, 4), having 2-cyano-3-octyloxy-3-oxo-1-propenyl (COOP) as terminal group and regioregular oligo(3-hexylthiophene) (nHT) as the π-conjugated bridge unit were synthesized. The optical and electrochemical properties of these compounds were systematically investigated. All these four compounds displayed broad absorption bands over 350-600 nm. The optical band gap becomes narrower (from 1.94 to 1.82 eV) and the HOMO energy levels increased (from -5.68 to -5.34 eV) with the increase of the length of the π-conjugated bridge. Organic solar cells using the synthesized compounds as the electron donor and PC61BM as the electron acceptor were fabricated and tested. Results showed that compounds with longer oligothiophene π-bridges have better power conversion efficiency and higher device stability. The device based on the quaterthiophene-bridged compound 4 gave a highest power conversion efficiency of 5.62% with a VOC of 0.93 V, JSC of 9.60 mA·cm-2, and a FF of 0.63.

2.
Chem Commun (Camb) ; 52(8): 1649-52, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26659142

RESUMO

A structurally non-planar molecule (SBF-PDI4) with a 9,9'-spirobi[9H-fluorene] (SBF) core and four perylenediimides (PDIs) at the periphery was designed, synthesized and characterized. This compound shows a low-lying LUMO energy level of -4.11 eV, which is similar to that of PCBM, but with intensive light absorption ability in the range 450-550 nm. A high power conversion efficiency (PCE) of 5.34% was obtained for a solution processed bulk heterojunction solar cell (BHJSC) using SBF-PDI4 as the electron acceptor and a low-band gap polymer poly[[4,8-bis[5-(2-ethylhexyl)thiophene-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7-Th) as the electron donor. These results demonstrate that PDI derivatives with a three dimensional molecular structure could serve as high performance electron acceptors in BHJSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA