Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 27(3): 449-461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177340

RESUMO

Microglia are resident immune cells of the central nervous system and play key roles in brain homeostasis. During anesthesia, microglia increase their dynamic process surveillance and interact more closely with neurons. However, the functional significance of microglial process dynamics and neuronal interaction under anesthesia is largely unknown. Using in vivo two-photon imaging in mice, we show that microglia enhance neuronal activity after the cessation of isoflurane anesthesia. Hyperactive neuron somata are contacted directly by microglial processes, which specifically colocalize with GABAergic boutons. Electron-microscopy-based synaptic reconstruction after two-photon imaging reveals that, during anesthesia, microglial processes enter into the synaptic cleft to shield GABAergic inputs. Microglial ablation or loss of microglial ß2-adrenergic receptors prevents post-anesthesia neuronal hyperactivity. Our study demonstrates a previously unappreciated function of microglial process dynamics, which enable microglia to transiently boost post-anesthesia neuronal activity by physically shielding inhibitory inputs.


Assuntos
Anestesia , Microglia , Camundongos , Animais , Microglia/fisiologia , Encéfalo/fisiologia , Sinapses/fisiologia , Neurônios/fisiologia
2.
Nanoscale ; 16(2): 833-847, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38093712

RESUMO

Astrocytes are highly activated following brain injuries, and their activation influences neuronal survival. Additionally, SOX9 expression is known to increase in reactive astrocytes. However, the role of SOX9 in activated astrocytes following ischemic brain damage has not been clearly elucidated yet. Therefore, in the present study, we investigated the role of SOX9 in reactive astrocytes using a poly-lactic-co-glycolic acid (PLGA) nanoparticle plasmid delivery system in a photothrombotic stroke animal model. We designed PLGA nanoparticles to exclusively enhance SOX9 gene expression in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Our observations indicate that PLGA nanoparticles encapsulated with GFAP:SOX9:tdTOM reduce ischemia-induced neurological deficits and infarct volume through the prostaglandin D2 pathway. Thus, the astrocyte-targeting PLGA nanoparticle plasmid delivery system provides a potential opportunity for stroke treatment. Since the only effective treatment currently available is reinstating the blood supply, cell-specific gene therapy using PLGA nanoparticles will open a new therapeutic paradigm for brain injury patients in the future.


Assuntos
Lesões Encefálicas , Nanopartículas , Acidente Vascular Cerebral , Humanos , Animais , Astrócitos/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Lesões Encefálicas/metabolismo , Peptídeos/farmacologia , Encéfalo/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/farmacologia
3.
Brain Behav Immun ; 115: 406-418, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37926132

RESUMO

Microglia are key players in maintaining brain homeostasis and exhibit phenotypic alterations in response to epileptic stimuli. However, it is still relatively unknown if these alterations are pro- or anti-epileptic. To unravel this dilemma, we employed chemogenetic manipulation of microglia using the artificial Gi-Dreadd receptor within a kainic acid (KA) induced murine seizure model. Our results indicate that acute Gi-Dreadd activation with Clozapine-N-Oxide can reduce seizure severity. Additionally, we observed increased interaction between microglia and neuronal soma, which correlated with reduced neuronal hyperactivity. Interestingly, prolonged activation of microglial Gi-Dreadds by repeated doses of CNO over 3 days, arrested microglia in a less active, homeostatic-like state, which associated with increased neuronal loss after KA induced seizures. RNAseq analysis revealed that prolonged activation of Gi-Dreadd interferes with interferon ß signaling and microglia proliferation. Thus, our findings highlight the importance of microglial Gi signaling not only during status epilepticus (SE) but also within later seizure induced pathology.


Assuntos
Microglia , Estado Epiléptico , Camundongos , Animais , Microglia/patologia , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente , Anticonvulsivantes , Encéfalo/patologia , Ácido Caínico/farmacologia
4.
Neurosci Bull ; 39(3): 368-378, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35976535

RESUMO

Chronic pain relief remains an unmet medical need. Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis. Particularly, microglia play a crucial role in the development of chronic pain. To better understand the microglial contribution to chronic pain, specific regional and temporal manipulations of microglia are necessary. Recently, two new approaches have emerged that meet these demands. Chemogenetic tools allow the expression of designer receptors exclusively activated by designer drugs (DREADDs) specifically in microglia. Similarly, optogenetic tools allow for microglial manipulation via the activation of artificially expressed, light-sensitive proteins. Chemo- and optogenetic manipulations of microglia in vivo are powerful in interrogating microglial function in chronic pain. This review summarizes these emerging tools in studying the role of microglia in chronic pain and highlights their potential applications in microglia-related neurological disorders.


Assuntos
Dor Crônica , Optogenética , Humanos , Encéfalo/fisiologia , Microglia , Dor Crônica/terapia , Neurônios/fisiologia
5.
Mol Brain ; 15(1): 86, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289499

RESUMO

Microglia are highly dynamic immune cells of the central nervous system (CNS). Microglial processes interact with neuronal elements constantly on the order of minutes. The functional significance of this acute microglia-neuron interaction and its potential role in the context of pain is still largely unknown. Here, we found that spinal microglia increased their process motility and electrophysiological reactivity within an hour after the insult in a mouse model of formalin-induced acute, sustained, inflammatory pain. Using an ablation strategy to specifically deplete resident microglia in the CNS, we demonstrate that microglia participate in formalin-induced acute sustained pain behaviors by amplifying neuronal activity in the spinal dorsal horn. Moreover, we identified that the P2Y12 receptor, which is specifically expressed in microglia in the CNS, was required for microglial function in formalin-induced pain. Taken together, our study provides a novel insight into the contribution of microglia and the P2Y12 receptor in inflammatory pain that could be used for potential therapeutic strategies.


Assuntos
Microglia , Neuralgia , Camundongos , Animais , Antagonistas do Receptor Purinérgico P2Y , Neurônios/fisiologia , Formaldeído
6.
Mol Brain ; 14(1): 99, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183051

RESUMO

Activation of spinal cord microglia contributes to the development of peripheral nerve injury-induced neuropathic pain. However, the molecular mechanisms underlying microglial function in neuropathic pain are not fully understood. We identified that the voltage-gated proton channel Hv1, which is functionally expressed in spinal microglia, was significantly increased after spinal nerve transection (SNT). Hv1 mediated voltage-gated proton currents in spinal microglia and mice lacking Hv1 (Hv1 KO) display attenuated pain hypersensitivities after SNT compared with wildtype (WT) mice. In addition, microglial production of reactive oxygen species (ROS) and subsequent astrocyte activation in the spinal cord was reduced in Hv1 KO mice after SNT. Cytokine screening and immunostaining further revealed that IFN-γ expression was compromised in spinal astrocytes in Hv1 KO mice. These results demonstrate that Hv1 proton channel contributes to microglial ROS production, astrocyte activation, IFN-γ upregulation, and subsequent pain hypersensitivities after SNT. This study suggests Hv1-dependent microglia-astrocyte communication in pain hypersensitivities and identifies Hv1 as a novel therapeutic target for alleviating neuropathic pain.


Assuntos
Astrócitos/patologia , Comunicação Celular , Canais Iônicos/metabolismo , Microglia/patologia , Neuralgia/etiologia , Neuralgia/patologia , Traumatismos dos Nervos Periféricos/complicações , Animais , Astrócitos/metabolismo , Proliferação de Células , Ativação Enzimática , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Medula Espinal/patologia , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
PLoS Biol ; 19(3): e3001154, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33739978

RESUMO

Spinal microglia are highly responsive to peripheral nerve injury and are known to be a key player in pain. However, there has not been direct evidence showing that selective microglial activation in vivo is sufficient to induce chronic pain. Here, we used optogenetic approaches in microglia to address this question employing CX3CR1creER/+: R26LSL-ReaChR/+ transgenic mice, in which red-activated channelrhodopsin (ReaChR) is inducibly and specifically expressed in microglia. We found that activation of ReaChR by red light in spinal microglia evoked reliable inward currents and membrane depolarization. In vivo optogenetic activation of microglial ReaChR in the spinal cord triggered chronic pain hypersensitivity in both male and female mice. In addition, activation of microglial ReaChR up-regulated neuronal c-Fos expression and enhanced C-fiber responses. Mechanistically, ReaChR activation led to a reactive microglial phenotype with increased interleukin (IL)-1ß production, which is likely mediated by inflammasome activation and calcium elevation. IL-1 receptor antagonist (IL-1ra) was able to reverse the pain hypersensitivity and neuronal hyperactivity induced by microglial ReaChR activation. Therefore, our work demonstrates that optogenetic activation of spinal microglia is sufficient to trigger chronic pain phenotypes by increasing neuronal activity via IL-1 signaling.


Assuntos
Dor Crônica/etiologia , Microglia/fisiologia , Nervos Espinhais/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Channelrhodopsins/metabolismo , Dor Crônica/fisiopatologia , Feminino , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Optogenética/métodos , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo , Nervos Espinhais/fisiologia
8.
Brain Behav Immun ; 92: 78-89, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33221486

RESUMO

Microglia play an important role in the central sensitization and chronic pain. However, a direct connection between microglial function and pain development in vivo remains incompletely understood. To address this issue, we applied chemogenetic approach by using CX3CR1creER/+:R26LSL-hM4Di/+ transgenic mice to enable expression of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (Gi DREADD) in microglia. We found that microglial Gi DREADD activation inhibited spinal nerve transection (SNT)-induced microglial reactivity as well as chronic pain in both male and female mice. Gi DREADD activation downregulated the transcription factor interferon regulatory factor 8 (IRF8) and its downstream target pro-inflammatory cytokine interleukin 1 beta (IL-1ß). Using in vivo spinal cord recording, we found that activation of microglial Gi DREADD attenuated synaptic transmission following SNT. Our results demonstrate that microglial Gi DREADD reduces neuroinflammation, synaptic function and neuropathic pain after SNT. Thus, chemogenetic approaches provide a potential opportunity for interrogating microglial function and neuropathic pain treatment.


Assuntos
Dor Crônica , Neuralgia , Animais , Feminino , Masculino , Camundongos , Microglia , Medula Espinal , Nervos Espinhais
9.
Adv Clin Exp Med ; 29(7): 819-824, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32735402

RESUMO

BACKGROUND: Conservative treatment, such as electrical stimulation and steroid injection, have been employed in an attempt to improve symptoms after peripheral nerve injury, without significant success. Although non-invasive and safe extracorporeal shockwave therapy (ESWT) can be a practical alternative, the therapeutic effects of ESWT on peripheral nerve remyelination has not been established. OBJECTIVES: To investigate the effects of ESWT on peripheral nerve remyelination and gait function for 5 weeks in a sciatic nerve crush model. MATERIAL AND METHODS: In total, we divided 97 rats into 5 groups: group 1 - a healthy negative control group; group 2 - 3 weeks after sciatic nerve crush and 3 sessions of ESWT; group 3 - 5 weeks after crush injury with 3 sessions of ESWT; group 4 - 3 weeks after crush injury with no ESWT; and group 5 - 5 weeks after crush injury with no ESWT. The focused ESWT was applied to the unilateral sciatic nerve injury site. One session consisted of 1,500 stimuli, and the session were performed at intervals of 1 week. RESULTS: The degree of myelination and expression of myelin basic protein at the distal part of the injured sciatic nerve tended to increase in the ESWT groups compared with the no-ESWT groups 3 and 5 weeks after crush injury. Regarding the functional gait recovery, the print width and area of the injured leg in the ESWT groups was significantly larger than that in the no-ESWT groups 3 and 5 weeks after crush injury. CONCLUSIONS: The ESWT may enhance peripheral nerve remyelination and gait function in a nerve crush model. Long-term follow-up after ESWT and investigation of molecular mechanisms will be needed to confirm these therapeutic effects.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Remielinização , Animais , Marcha , Compressão Nervosa , Regeneração Nervosa , Ratos , Recuperação de Função Fisiológica , Nervo Isquiático
10.
J Clin Invest ; 130(8): 4025-4038, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32568214

RESUMO

Neuromyelitis optica (NMO) is a severe inflammatory autoimmune CNS disorder triggered by binding of an IgG autoantibody to the aquaporin 4 (AQP4) water channel on astrocytes. Activation of cytolytic complement has been implicated as the major effector of tissue destruction that secondarily involves myelin. We investigated early precytolytic events in the evolving pathophysiology of NMO in mice by continuously infusing IgG (NMO patient serum-derived or AQP4-specific mouse monoclonal), without exogenous complement, into the spinal subarachnoid space. Motor impairment and sublytic NMO-compatible immunopathology were IgG dose dependent, AQP4 dependent, and, unexpectedly, microglia dependent. In vivo spinal cord imaging revealed a striking physical interaction between microglia and astrocytes that required signaling from astrocytes by the C3a fragment of their upregulated complement C3 protein. Astrocytes remained viable but lost AQP4. Previously unappreciated crosstalk between astrocytes and microglia involving early-activated CNS-intrinsic complement components and microglial C3a receptor signaling appears to be a critical driver of the precytolytic phase in the evolving NMO lesion, including initial motor impairment. Our results indicate that microglia merit consideration as a potential target for NMO therapeutic intervention.


Assuntos
Astrócitos/metabolismo , Comunicação Celular , Microglia/metabolismo , Neuromielite Óptica/metabolismo , Transdução de Sinais , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/patologia , Complemento C3a/genética , Complemento C3a/metabolismo , Feminino , Humanos , Camundongos , Camundongos Knockout , Microglia/patologia , Neuromielite Óptica/genética , Neuromielite Óptica/patologia
11.
Sci Rep ; 10(1): 5510, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251352

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Glia ; 68(5): 1065-1080, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31833596

RESUMO

Tonic extrasynaptic GABAA receptor (GABAA R) activation is under the tight control of tonic GABA release from astrocytes to maintain the brain's excitation/inhibition (E/I) balance; any slight E/I balance disturbance can cause serious pathological conditions including epileptic seizures. However, the pathophysiological role of tonic GABA release from astrocytes has not been tested in epileptic seizures. Here, we report that pharmacological or genetic intervention of the GABA-permeable Bestrophin-1 (Best1) channel prevented the generation of tonic GABA inhibition, disinhibiting CA1 pyramidal neuronal firing and augmenting seizure susceptibility in kainic acid (KA)-induced epileptic mice. Astrocyte-specific Best1 over-expression in KA-injected Best1 knockout mice fully restored the generation of tonic GABA inhibition and effectively suppressed seizure susceptibility. We demonstrate for the first time that tonic GABA from reactive astrocytes strongly contributes to the compensatory shift of E/I balance in epileptic hippocampi, serving as a good therapeutic target against altered E/I balance in epileptic seizures.


Assuntos
Astrócitos/metabolismo , Bestrofinas/metabolismo , Hipocampo/metabolismo , Inibição Neural/fisiologia , Convulsões/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Bestrofinas/genética , Ácido Caínico , Camundongos , Camundongos Knockout , Receptores de GABA-A/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética
13.
J Pain Res ; 12: 1685-1699, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239755

RESUMO

Background: Mitophagy is the selective engulfment of mitochondria by autophagosomes and the subsequent mitochondrial catabolism by lysosomes. Evidence has suggested an important role for mitochondrial dynamics and mitophagic flux in the development of many different neurodegenerative diseases. Objectives: The potential role of the mechanism underlying mitochondrial dynamics and mitophagic flux as it may relate to neuropathic pain is not well understood. This is a disease that largely remains an area of mechanistic uncertainty. PINK1 is a PTEN-induced mitochondrial kinase that can be selectively activated under mitochondrial stress conditions and lead to the induction of mitophagy. Materials and methods: A neuropathic pain rat model was established via spinal nerve ligation (SNL) and nociception was assayed via the von Frey filament method. Increased expression of PINK1 and the mechanism of mitophagy was detected in GABAergic interneurons of dorsal horn neurons of mice that underwent L5 SNL in comparison to control mice counterparts (n=8, P<0.001) by Western blotting, immunohistochemistry and double immunofluorescence staining. Results: Elevated expression of PINK1 appeared to localize selectively to GABAergic interneurons, particularly within autophagic mitochondria as evidenced by co-localization studies of PINK1 with BECN1, LC3II and COX IV on immunofluorescent microscopy. Furthermore, we also detected a significant increase in autophagosomes in dorsal horn neurons of SNL mice and this was consistent with increased autophagic activity as measured by the p62 autophagic substrate. Conclusion: These results demonstrate that neuropathic pain causes aberrant mitophagic flux selectively in GABAergic interneurons and provide evidence implicating mitophagy as an important area of future molecular studies to enhance our understanding of neuropathic pain.

14.
Antioxid Redox Signal ; 30(13): 1601-1620, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30070145

RESUMO

AIMS: Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease thought to be caused by repetitive traumatic brain injury (TBI) and subconcussive injuries. While hyperphosphorylation of tau (p-Tau), which is attributed to astrocytic tangles (ATs) and neurofibrillary tangles, is known to be involved in CTE, there are limited neuropathological or molecular data. By utilizing repetitive mild TBI (rmTBI) mouse models, our aim was to examine the pathological changes of CTE-associated structures, specifically the ATs. RESULTS: Our rmTBI mouse models showed symptoms of depressive behavior and memory deficit, alongside an increased p-Tau expression in their neurons and astrocytes in both the hippocampus and cortex. rmTBI induced oxidative stress in endothelial cells and nitric oxide (NO) generation in astrocytes, which were mediated by hypoxia and increased hypoxia-inducible factor 1-α (HIF1α). There was also correlated decreased regional cerebral tissue perfusion units, mild activation of astrocytes and NFκB phosphorylation, increased expression of inducible nitric oxide synthase (iNOS), increased endothelial nitric oxide synthase (eNOS) uncoupling with decreased tetrahydrobiopterin, and increased expression of nitrotyrosine, NADPH oxidase 2 (Nox2)/nuclear factor (erythroid-derived 2) factor 2 (Nrf2) signaling proteins. Combined, these effects induced peroxynitrite formation and hyperphosphorylation of tau in the hippocampus and cortex toward the formation of ATs. INNOVATION: Our model features molecular pathogenesis events of CTE with clinically relevant latency periods. In particular, this is the first demonstration of an increased astrocytic iNOS expression in an in vivo model. CONCLUSION: We propose a novel mechanism of uncoupled eNOS and NO contribution to Tau phosphorylation and AT formation in rmTBI brain, toward an increased molecular understanding of the pathophysiology of human CTE.


Assuntos
Encefalopatia Traumática Crônica/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas tau/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Encefalopatia Traumática Crônica/etiologia , Modelos Animais de Doenças , Expressão Gênica , Hipocampo/metabolismo , Hipóxia/metabolismo , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Oxirredução , Fosforilação , Proteínas tau/genética
15.
Pain Res Manag ; 2018: 9185368, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356379

RESUMO

Neuropathic pain (NP) is caused by lesions of the peripheral fibers and central neurons in the somatosensory nervous system and affects 7-10% of the general population. Although the distinct cause of neuropathic pain has been investigated in primary afferent neurons over the years, pain modulation by central sensitization remains controversial. NP is believed to be driven by cell type-specific spinal synaptic plasticity in the dorsal horn. Upon intense afferent stimulation, spinothalamic tract neurons are potentiated, whereas GABAergic interneurons are inhibited leading to long-term depression. Growing evidences suggest that the inhibition of GABAergic neurons plays pivotal roles in the manifestation of neuropathic and inflammatory pain states. Downregulation of GABA transmission and impairment of GABAergic interneurons in the dorsal horn are critical consequences after spinal cord and peripheral nerve injuries. These impairments in GABAergic interneurons may be associated with dysfunctional autophagy, resulting in neuropathic pain. Here, we review an emerging number of investigations that suggest a pivotal role of impaired autophagy of GABAergic interneurons in NP. We discuss relevant research spurring the development of new targets and therapeutic agents of NP and emphasize the need for a multidisciplinary approach to manage NP in the future.


Assuntos
Autofagia/fisiologia , Interneurônios/fisiologia , Neuralgia/fisiopatologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Humanos , Medição da Dor , Medula Espinal/patologia , Medula Espinal/fisiopatologia
16.
Cell Rep ; 23(4): 959-966, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694903

RESUMO

Microglia are an exquisitely tiled and self-contained population in the CNS that do not receive contributions from circulating monocytes in the periphery. While microglia are long-lived cells, the extent to which their cell bodies are fixed and the molecular mechanisms by which the microglial landscape is regulated have not been determined. Using chronic in vivo two-photon imaging to follow the microglial population in young adult mice, we document a daily rearrangement of the microglial landscape. Furthermore, we show that the microglial landscape can be modulated by severe seizures, acute injury, and sensory deprivation. Finally, we demonstrate a critical role for microglial P2Y12Rs in regulating the microglial landscape through cellular translocation independent of proliferation. These findings suggest that microglial patrol the CNS through both process motility and soma translocation.


Assuntos
Movimento Celular , Proliferação de Células , Microglia/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microscopia de Fluorescência por Excitação Multifotônica , Receptores Purinérgicos P2Y12/genética
17.
J Neuroinflammation ; 14(1): 189, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927423

RESUMO

BACKGROUND: The primary cilium is an organelle that can act as a master regulator of cellular signaling. Despite the presence of primary cilia in hippocampal neurons, their function is not fully understood. Recent studies have demonstrated that the primary cilium influences interleukin (IL)-1ß-induced NF-κB signaling, ultimately mediating the inflammatory response. We, therefore, investigated ciliary function and NF-κB signaling in lipopolysaccharide (LPS)-induced neuroinflammation in conjunction with ciliary length analysis. METHODS: Since TLR4/NF-κB signaling is a well-known inflammatory pathway, we measured ciliary length and inflammatory mediators in wild type (WT) and TLR4-/- mice injected with LPS. Next, to exclude the effects of microglial TLR4, we examined the ciliary length, ciliary components, inflammatory cytokine, and mediators in HT22 hippocampal neuronal cells. RESULTS: Primary ciliary length decreased in hippocampal pyramidal neurons after intracerebroventricular injection of LPS in WT mice, whereas it increased in TLR4-/- mice. LPS treatment decreased primary ciliary length, activated NF-κB signaling, and increased Cox2 and iNOS levels in HT22 hippocampal neurons. In contrast, silencing Kif3a, a key protein component of cilia, increased ARL13B ciliary protein levels and suppressed NF-κB signaling and expression of inflammatory mediators. CONCLUSIONS: These data suggest that LPS-induced NF-κB signaling and inflammatory mediator expression are modulated by cilia and that the blockade of primary cilium formation by Kif3a siRNA regulates TLR4-induced NF-κB signaling. We propose that primary cilia are critical for regulating NF-κB signaling events in neuroinflammation and in the innate immune response.


Assuntos
Cílios/imunologia , Hipocampo/imunologia , Inflamação/imunologia , Neurônios/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Cílios/metabolismo , Cílios/ultraestrutura , Hipocampo/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Neurônios/metabolismo , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/metabolismo
18.
Mol Med Rep ; 16(2): 2009-2015, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28656207

RESUMO

In previous studies that have profiled gene expression in patients with complex regional pain syndrome (CRPS), the expression of granulocyte colony-stimulating factor 3 receptor (G­CSFR) was elevated, as were a number of pain­associated genes. The present study determined the expression of G­CSFR and the mechanisms by which it may affect hypersensitivity, focusing on the signal transducer and activator of transcription 3 (STAT3)/transient receptor potential cation channel subfamily V 1 (TRPV1) signaling pathway in particular, which is an important mediator of pain. Following L5 spinal nerve ligation (SNL) surgery, the protein and mRNA levels of G­CSFR increased in the ipsilateral spinal dorsal horn when compared with the sham and/or contralateral control. Double immunofluorescence further demonstrated that G­CSFR colocalized with TRPV1 and phosphorylated STAT in the neurons of the spinal dorsal horn. G­CSF treatment led to an increase in G­CSFR and TRPV1 expression and phosphorylation of STAT3. These results indicate that G­CSF­induced G­CSFR expression may activate TRPV1 by promoting phosphorylation of STAT3. Collectively, the results suggest, for the first time, that the expression of G­CSFR in neurons following peripheral nerve injury may be involved in the induction and maintenance of neuropathic pain through the STAT3 and TRPV1 signaling pathway.


Assuntos
Neuralgia/etiologia , Neuralgia/metabolismo , Receptores de Fator Estimulador de Colônias/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Nervos Espinhais/cirurgia , Animais , Fator Estimulador de Colônias de Granulócitos/farmacologia , Ligadura , Masculino , Neuralgia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/patologia , Nervos Espinhais/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
19.
Oncol Lett ; 13(6): 4055-4076, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28599408

RESUMO

Peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) is a key modulator of mitochondrial biogenesis. It is a coactivator of multiple transcription factors and regulates metabolic processes. However, little is known about the expression and function of PGC1α in glioblastoma multiforme (GBM), the most prevalent and invasive type of brain tumor. The purpose of the present study was to investigate the biological function, localization and expression of PGC1α in GBM. It was observed that PGC1α expression is increased in the tumor cells, and a higher level of expression was observed in the mitochondria. Bioinformatics analyses identified that metabolic and mitochondrial genes were highly expressed in GBM cells, with a high PGC1α mRNA expression. Notably, mitochondrial function-associated genes were highly expressed in cells alongside high PGC1α expression. Collectively, the results of the present study indicate that PGC1α is associated with mitochondrial dysfunction in GBM and may have a role in tumor pathogenesis and progression.

20.
Exp Neurobiol ; 26(1): 25-32, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28243164

RESUMO

Akt (also known as protein kinase B, PKB) has been seen to play a role in astrocyte activation of neuroprotection; however, the underlying mechanism on deregulation of Akt signaling in brain injuries is not fully understood. We investigated the role of carboxy-terminal modulator protein (CTMP), an endogenous Akt inhibitor, in brain injury following kainic acid (KA)-induced neurodegeneration of mouse hippocampus. In control mice, there was a weak signal for CTMP in the hippocampus, but CTMP was markedly increased in the astrocytes 3 days after KA treatment. To further investigate the effectiveness of Akt signaling, the phosphorylation of CTMP was examined. KA treatment induced an increased p-CTMP expression in the astrocytes of hippocampus at 1 day. LPS/IFN-γ-treatment on primary astrocytes promoted the p-CTMP was followed by phosphorylation of Akt and finally upregulation of CTMP and p-CREB. Time-dependent expression of p-CTMP, p-Akt, p-CREB, and CTMP indicate that LPS/IFN-γ-induced phosphorylation of CTMP can activate Akt/CREB signaling, whereas lately emerging enhancement of CTMP can inhibit it. These results suggest that elevation of CTMP in the astrocytes may suppress Akt activity and ultimately negatively affect the outcome of astrocyte activation (astroglisiois). Early time point enhancers of phosphorylation of CTMP and/or late time inhibitors specifically targeting CTMP may be beneficial in astrocyte activation for neuroprotection within treatment in neuroinflammatory conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA