Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 149(13): 12315-12332, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37432454

RESUMO

BACKGROUND: Glioblastoma (GBM) is one of the most common malignant brain tumors in adults and is characterized by high aggressiveness and rapid progression, poor treatment, high recurrence rate, and poor prognosis. Although super-enhancer (SE)-driven genes haven been recognized as prognostic markers for several cancers, whether it can be served as effective prognostic markers for patients with GBM has not been evaluated. METHODS: We first combined histone modification data with transcriptome data to identify SE-driven genes associated with prognosis in patients with GBM. Second, we developed a SE-driven differentially expressed genes (SEDEGs) risk score prognostic model by univariate Cox analysis, KM survival analysis, multivariate Cox analysis and least absolute shrinkage and selection operator (LASSO) regression. Its reliability in predicting was verified by two external data sets. Third, through mutation analysis, immune infiltration, we explored the molecular mechanisms of prognostic genes. Next, Genomics of Drug Sensitivity in Cancer (GDSC) and the Connectivity Map (cMap) database were employed to assess different sensitivities to chemotherapeutic agents and small-molecule drug candidates between high- and low-risk patients. Finally, SEanalysis database was chosen to identify SE-driven transcription factors (TFs) regulating prognostic markers which will reveal a potential SE-driven transcriptional regulatory network. RESULTS: First, we developed a 11-gene risk score prognostic model (NCF2, MTHFS, DUSP6, G6PC3, HOXB2, EN2, DLEU1, LBH, ZEB1-AS1, LINC01265, and AGAP2-AS1) selected from 1,154 SEDEGs, which is not only an independent prognostic factor for patients, but also can effectively predict the survival rate of patients. The model can effectively predict 1-, 2- and 3-year survival of patients and was validated in external Chinese Glioma Genome Atlas (CGGA) and Gene Expression Omnibus (GEO) datasets. Second, the risk score was positively correlated with the infiltration of regulatory T cell, CD4 memory activated T cell, activated NK cell, neutrophil, resting mast cell, M0 macrophage, and memory B cell. Third, we found that high-risk patients showed higher sensitivity than low-risk patients to both 27 chemotherapeutic agents and 4 small-molecule drug candidates which might benefit further precision therapy for GBM patients. Finally, 13 potential SE-driven TFs imply how SE regulates GBM patient's prognosis. CONCLUSION: The SEDEG risk model not only helps to elucidate the impact of SEs on the course of GBM, but also provides a bright future for prognosis determination and choice of treatment for GBM patients.


Assuntos
Glioblastoma , Glioma , Adulto , Humanos , Glioblastoma/genética , Prognóstico , Reprodutibilidade dos Testes , Redes Reguladoras de Genes , Fatores de Transcrição , Proteínas de Homeodomínio
2.
Biochem Genet ; 61(6): 2401-2424, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37100923

RESUMO

Due to the high heterogeneity, lung adenocarcinoma (LUAD) cannot be distinguished into precise molecular subtypes, thereby resulting in poor therapeutic effect and low 5-year survival rate clinically. Although the tumor stemness score (mRNAsi) has been shown to accurately characterize the similarity index of cancer stem cells (CSCs), whether mRNAsi can serve as an effective molecular typing tool for LUAD isn't reported to date. In this study, we first demonstrate that mRNAsi is significantly correlated with the prognosis and disease degree of LUAD patients, i.e., the higher the mRNAsi, the worse the prognosis and the higher the disease degree. Second, we identify 449 mRNAsi-related genes based on both weighted gene co-expression network analysis (WGCNA) and univariate regression analysis. Third, our results display that 449 mRNAsi-related genes can accurately distinguish the LUAD patients into two molecular subtypes: ms-H subtype (with high mRNAsi) and ms-L subtype (with low mRNAsi), particularly the ms-H subtype has a worse prognosis. Remarkably, significant differences in clinical characteristics, immune microenvironment, and somatic mutation exist between the two molecular subtypes, which might lead to the poorer prognosis of the ms-H subtype patients than that of the ms-L subtype ones. Finally, we establish a prognostic model containing 8 mRNAsi-related genes, which can effectively predict the survival rate of LUAD patients. Taken together, our work provides the first molecular subtype related to mRNAsi in LUAD, and reveals that these two molecular subtypes, the prognostic model and marker genes may have important clinical value for effectively monitoring and treating LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Perfilação da Expressão Gênica , Tipagem Molecular , Células-Tronco Neoplásicas , Neoplasias Pulmonares/genética , Microambiente Tumoral
3.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077333

RESUMO

BACKGROUND: Breast cancer (BC) is the most common malignancy in women with high heterogeneity. The heterogeneity of cancer cells from different BC subtypes has not been thoroughly characterized and there is still no valid biomarker for predicting the prognosis of BC patients in clinical practice. METHODS: Cancer cells were identified by calculating single cell copy number variation using the inferCNV algorithm. SCENIC was utilized to infer gene regulatory networks. CellPhoneDB software was used to analyze the intercellular communications in different cell types. Survival analysis, univariate Cox, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox analysis were used to construct subtype specific prognostic models. RESULTS: Triple-negative breast cancer (TNBC) has a higher proportion of cancer cells than subtypes of HER2+ BC and luminal BC, and the specifically upregulated genes of the TNBC subtype are associated with antioxidant and chemical stress resistance. Key transcription factors (TFs) of tumor cells for three subtypes varied, and most of the TF-target genes are specifically upregulated in corresponding BC subtypes. The intercellular communications mediated by different receptor-ligand pairs lead to an inflammatory response with different degrees in the three BC subtypes. We establish a prognostic model containing 10 genes (risk genes: ATP6AP1, RNF139, BASP1, ESR1 and TSKU; protective genes: RPL31, PAK1, STARD10, TFPI2 and SIAH2) for luminal BC, seven genes (risk genes: ACTR6 and C2orf76; protective genes: DIO2, DCXR, NDUFA8, SULT1A2 and AQP3) for HER2+ BC, and seven genes (risk genes: HPGD, CDC42 and PGK1; protective genes: SMYD3, LMO4, FABP7 and PRKRA) for TNBC. Three prognostic models can distinguish high-risk patients from low-risk patients and accurately predict patient prognosis. CONCLUSIONS: Comparative analysis of the three BC subtypes based on cancer cell heterogeneity in this study will be of great clinical significance for the diagnosis, prognosis and targeted therapy for BC patients.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , ATPases Vacuolares Próton-Translocadoras , Actinas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Proteínas Cromossômicas não Histona , Variações do Número de Cópias de DNA , Feminino , Histona-Lisina N-Metiltransferase , Humanos , Proteínas com Domínio LIM/genética , Prognóstico , RNA-Seq , Receptores de Superfície Celular/metabolismo , Análise de Célula Única , Neoplasias de Mama Triplo Negativas/patologia , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
Front Oncol ; 11: 691115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307154

RESUMO

Many dysregulated microRNAs (miRNAs) have been suggested to serve as oncogenes or tumor suppressors to act as diagnostic and prognostic factors for HCC patients. However, the dysregulated mechanisms of miRNAs in HCC remain largely unknown. Herein, we firstly identify 114 disordered mature miRNAs in HCC, 93 of them are caused by dysregulated transcription factors, and 10 of them are driven by the DNA methylation of their promoter regions. Secondly, we find that seven up-regulated miRNAs (miR-9-5p, miR-452-5p, miR-452-3p, miR-1180-3p, miR-4746-5p, miR-3677-3 and miR-4661-5p) can promote tumorigenesis via inhibiting multiple tumor suppressor genes participated in metabolism, which may act as oncogenes, and seven down-regulated miRNAs (miR-99-5p, miR-5589-5p, miR-5589-3p, miR-139-5p, miR-139-3p, miR-101-3p and miR-125b-5p) can suppress abnormal cell proliferation via suppressing a number of oncogenes involved in cancer-related pathways, which may serve as tumor suppressors. Thirdly, our findings reveal a mechanism that transcription factor and miRNA interplay can form various regulatory loops to synergistically control the occurrence and development of HCC. Finally, our results demonstrate that this key transcription factor FOXO1 can activate a certain number of tumor suppressor miRNAs to improve the survival of HCC patients, suggesting FOXO1 as an effective therapeutic target for HCC patients. Overall, our study not only reveals the dysregulated mechanisms of miRNAs in HCC, but provides several novel prognostic biomarkers and potential therapeutic targets for HCC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA