RESUMO
In recent years, consumer trends have been changing toward fresh food products such as fruit juice, vinegar, etc. that are a good source of bioactive components, high nutritional characteristics, and beneficial microorganisms. Blackthorn (Prunus spinosa L.) vinegar (BV) is one of these nutritious foods. The study aims to examine the efficacy of ultraviolet-C (UV-C) light applied by a modified reactor and ultrasonication on bioactive compounds (total phenolic, total flavonoid, ascorbic acid content, and antioxidant activity) of traditionally produced BV. Furthermore, the volatile organic compound (VOC) profile, hydroxymethylfurfural (HMF) content, cytotoxicity properties, and color were assessed. UV-C light and ultrasonication processes enriched most bioactive components, but these methods did not significantly improve ascorbic acid (p > 0.05) compared to pasteurization. Twenty-seven volatile compounds were analyzed in order to determine the VOC profile. As a result, thermal and nonthermal methods were found to affect the profile significantly (p < 0.05). No significant differences were detected in total soluble solids (4.70-4.77), titratable acidity (3.81-3.87), and pH (3.39-3.41) values. The anticarcinogenic activities of UV-C-treated BVs were more significant than others. Nonthermal treatments were generally better than pasteurization in maintaining and enriching the quality of BV. In this study, UV-C light and ultrasonication technology can be used as an alternative to traditional thermal techniques to improve the quality of BV.
RESUMO
Oleogel significantly affects the product's sensory properties, texture, and shelf life. The goal of this study was to create oleogel by combining corn oil and sunflower oil and utilizing beeswax as a structural agent. A variety of physicochemical analyses were done to evaluate the quality of oleogel, including peroxide value, iodine value, saponification value, fatty acid, rheological parameters and firmness. Different percentages of oleogel, ranging from 0% to 75%, were used to substitute margarine in cookies. The cookies' quality was evaluated using proximate analysis, color analysis, texture analysis, calorific value, and sensory analysis. The study yielded substantial results by finding the ideal margarine-to-oleogel mix ratio, allowing for the manufacturing of high-quality cookies with a greater degree of unsaturation. Cookies with oleogel showed higher levels of unsaturation and better properties, making them the preferred option among consumers.
RESUMO
Poppy vinegar with functional properties is a fermented product. This study evaluated traditionally produced poppy vinegar. The study was conducted on poppy vinegar to determine the maximum increase in angiotensin converting enzyme (ACE) inhibitory activity %, total phenolic content (TPC), and radical scavenging activity (DPPH) of the vinegar at different combinations of ultrasound treatment duration (2-14 min) and amplitude (40-100%). The optimal parameters obtained using the response surface methodologies (RSM) were the duration of the ultrasound of 5.5 min and the amplitude of the ultrasound at 57%. When the DPPH values, ACE inhibition %, and TPC and DPPH values obtained with the RSM model were compared with the experimental values, the difference was 9.80, 3.0, and 4.6%, respectively, showing good agreement between actual and predicted values. The higher ultrasound intensities and longer treatment times had a significant effect on antioxidant activity. Poppy vinegar samples significantly induced the apoptosis of lung cancer cells, particularly those stored for 6 and 12 months. The amounts of protocatechuic acid, gallic acid, neohesperidin, hydroxybenzoic acid, resveratrol, rutin, trans-cinnamic acid, quercetin, and flavon in poppy vinegar were determined, which decreased significantly as storage time increased. TPC and TFC were determined to be 90.39 mg of GAE/100 mL and 29.86 mg of TEAC/mL, respectively, and there was no significant change in these bioactive compounds after 6 months of storage. The highest value of ACE inhibitory activity was found at the beginning of the storage period. The present study was the first study to examine the bioactive components, ACE inhibition activity, pro-apoptotic activities, and phenolic composition of traditionally produced ultrasound-treated poppy vinegar during storage. The control of production parameters and the design of ideal poppy vinegar fermentation processes could benefit from this research.
RESUMO
(1) Background: There is a balance between nutrition, glycemic control, and immune response. Their roles in physiological mechanisms are essential for maintaining life quality. This study aimed to evaluate hawthorn vinegar's metabolic effects, and describe its possible mechanism. We also pointed out several vinegar production methods to clarify the antioxidant features. (2) Methods: In the study, three vinegar techniques were applied to vinegar: traditional production of hawthorn vinegar (N), thermal pasteurization (P), and ultrasound method (U). Thirty-two female adult Wistar albino rats were randomly separated into four groups: Control, N1 (regular vinegar; 1 mL/kg bw), P1 (pasteurized vinegar; 1 mL/kg bw), and U1(ultrasound treated vinegar; 1 mL/kg bw). Vinegar was administered by oral gavage daily for 45 days. Initial and final weights, the percentage changes of body weight gains, and Gamma-Glutamyl Transferase (GGT) values of plasma and liver were measured. The total protein, globulin, and albumin values of plasma, liver, and intestinal tissue were determined. In addition, plasma glucagon-like peptide-1 (GLP-1) and glucose concentrations were evaluated. (3) Results: There was a statistical increase in total intestinal protein value and an increasing tendency in total protein in plasma and liver in group U1 compared to group Control. However, the GGT concentrations in plasma and liver were slightly lower in group U1 than in group Control. In addition, there were significant increases in plasma GLP-1 values in all experimental groups compared to the Control group (p: 0.015; 576.80 ± 56.06, 773.10 ± 28.92, 700.70 ± 17.05 and 735.00 ± 40.70; respectively groups control, N1, P1, and U1). Also, liver GLP-1 concentrations in groups P1 and U1 were higher than in group Control (p: 0.005; 968.00 ± 25.54, 1176 ± 17.54 and 1174.00 ± 44.06, respectively groups control, P1 and U1). On the other hand, significant decreases were found in plasma glucose concentrations in groups N1 and U1 as to the Control group (p: 0.02; Control: 189.90 ± 15.22, N1: 133.10 ± 7.32 and U1: 142.30 ± 4.14). Besides, liver glucose levels were lower in all experimental groups than in group Control statistically (p: 0.010; 53.47 ± 0.97, 37.99 ± 1.46, 44.52 ± 4.05 and 44.57 ± 2.39, respectively groups control, N1, P1, and U1). (4) Conclusions: The findings suggest that hawthorn vinegar can balance normal physiological conditions via intestinal health, protein profiles, and glycemic control. Additionally, ultrasound application of vinegar may improve the ability of hawthorn vinegar, and have positive effects on general health.
Assuntos
Ácido Acético , Glicemia , Crataegus , Peptídeo 1 Semelhante ao Glucagon , Ratos Wistar , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Animais , Feminino , Glicemia/metabolismo , Ratos , Crataegus/química , Fígado/metabolismo , Proteínas/metabolismo , Antioxidantes/metabolismoRESUMO
Thermosonication (TS), also known as ultrasonic-assisted heat treatment, is gaining attention in liquid product processing due to its ability to improve quality parameters and can serve as an alternative to thermal treatments. The parsley juice (TS-PJ) was subjected to thermosonication treatment (frequency: 26 kHz; power: 200 W; amplitude 60, 70, 80, 90, and 100%; temperature: 40, 45, 50, 55, and 60 °C; time: 4, 6, 8, 10, and 12 min) and was compared with untreated control parsley juice (C-PJ) and pasteurized treated (P-PJ) (85 °C/2 min) parsley juice samples. The objectives of the research work were to determine the effect of thermosonication on the quality attributes such as total chlorophyll and ascorbic acid of parsley juice using particle swarm algorithm (PSO), multiple linear regression (MLR), and response surface methodology (RSM). Thermosonication enhanced the bioactive compounds of parsley juice. The results showed that 15 phenolic compounds were detected in the samples. There was a significant (p < 0.05) increase in gallic acid contents in ultrasound-treated TS-PJ. There was no significant difference in total chlorophyll and ascorbic acid content between C-PJ and TS-PJ samples. Na and K from macro minerals and Fe and Zn from micro minerals were high in PJ samples. While K contents were increased, P contents were lower in the TS-PJ sample. RSM modeling provided superior prediction compared to MLR. PSO, on the other hand, made good predictions intuitively. Thermosonication enriched parsley juice's bioactive components and had positive health effects.
RESUMO
This research aimed to investigate the effects of ultrasound treatment on the quality characteristics of optimized functional bee bread-enriched poppy sherbet. Antioxidant activity capacity, antimicrobial activity, phenolic compounds, ascorbic acid, organic acid and sugar composition, and sensory properties were performed under storage conditions. The present research was the first to express the effect of ultrasound on the bioactive components in a functional poppy sherbet enriched with bread, using the response surface methodology (RSM) optimization. The maximum optimization, radical scavenging activity (DPPH), total phenolic content (TPC), total anthocyanin content (TAC), and general acceptability values were determined. When comparing the 0th- and 21st-day samples of bee bread-fortified functional poppy sherbets, it was observed that the TPC was decreased (p < 0.05). It was also noted that there was no significant decrease in the total flavonoids on day 21. In storage, a decrease in anthocyanin content was observed. Among phenolic compounds, gallic acid had the highest content. While citric acid was found in the highest amount of organic acid, sucrose (6.25 g/L) was found in the highest amount of sugar components 0th day, while MIC values against Micrococcus luteus were lower. The data from this study will be important input for future work.
RESUMO
BACKGROUND: The hawthorn fruit is an interesting medicinal plant that has several biological features, especially related to anti-inflammatory, antioxidant and immune-modulating actions, and boosting general health. In this study, we aimed to clarify the immunological effects of hawthorn vinegar on immunity and general health. We also focused on three different production processes to improve the antioxidant activity of hawthorn vinegar (2) Methods: In the study, besides the traditional production of hawthorn vinegar (N), thermal pasteurization (P) and ultrasound (U) techniques were applied to vinegars. A total of 56 female adult Wistar albino rats were randomly allocated into seven groups; Control, N0.5 (regular vinegar; 0.5 mL/kgbw), N1 (regular vinegar; 1 mL/kgbw), P0.5 (pasteurized vinegar; 0.5 mL/kgbw), P1 (pasteurized vinegar; 1 mL/kgbw), U0.5 (ultrasound treated vinegar; 0.5 mL/kgbw), and U1 (ultrasound treated vinegar; 1 mL/kgbw). Vinegars were administered by oral gavage daily. The average weight gains, body mass index, and blood hematological parameters were measured, and the Neutrophil Lymphocyte ratio was calculated. The plasma IL-1ß and TNF-α values, and MDA, IL-1ß and TNF-α values of intestinal tissue, were determined. Also, the streptavidin-biotin-peroxidase complex method was applied to determine the expressions of TNF-α and IL-1ß in duodenum. (3) Results: There was a decreasing tendency in the average weight gains in all vinegar groups compared to the control group. In addition, there was an increase in NL ratio in all vinegar groups, although not significant. There were no statistical differences among all vinegar groups, although decreases were observed in plasma IL-1ß. Also, the plasma TNF-α values showed slight increases in high-dose-of-vinegar groups (N1, P1 and U1), although not significant. In addition, the intestinal tissue IL-1ß value tended to increase in groups N0.5, N1 and P0.5, while it tended to decrease in P1, U0.5 and U1. On the other hand, there were slight increases in the TNF-α values of intestinal tissue in all groups compared to control, although these were not significant. Furthermore, the intensive expressions of TNF-α and IL-1ß were determined in groups U0.5 and U1. (4) Conclusions: The results suggest that either high doses or ultrasound applications of hawthorn vinegar have positive effects on intestinal health, boosting immunity and general health.
Assuntos
Ácido Acético , Crataegus , Ratos Wistar , Animais , Feminino , Crataegus/química , Ratos , Antioxidantes/farmacologia , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Frutas/químicaRESUMO
Gilaburu (Viburnum opulus L.) is a red-colored fruit with a sour taste that grows in Anatolia. It is rich in various antioxidant and bioactive compounds. In this study, bioactive compounds and ultrasound parameters of ultrasound-treated gilaburu water were optimized by response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). As a result of RSM optimization, the independent ultrasound parameters were determined as an ultrasound duration of 10.7 min and an ultrasound amplitude of 53.3, respectively. The R2 values of the RSM modeling level were 99.93%, 98.54%, and 99.80%, respectively, and the R2 values of the ANFIS modeling level were 99.99%, 98.89%, and 99.87%, respectively. Some quality parameters of gilaburu juice were compared between ultrasound-treated gilaburu juice (UT-GJ), thermal pasteurized gilaburu juice (TP-GJ), and control group (C-GJ). The quality parameters include bioactive compounds, phenolic compounds, minerals, and sensory evaluation. Bioactive compounds in the samples increased after ultrasound application compared to C-GJ and TP-GJ samples. The content of 15 different phenolic compounds was determined in Gilaburu juice samples, and the phenolic compound of UT-GJ samples increased compared to TP-GJ and C-GJ samples, except for gentisic acid. Ultrasound treatment applied to gilaburu juice enabled its bioactive compounds to hold more in the juice.
Assuntos
Sucos de Frutas e Vegetais , Aprendizado de Máquina , Sucos de Frutas e Vegetais/análise , Ondas Ultrassônicas , Lógica Fuzzy , Qualidade dos Alimentos , Fenóis/análise , Fenóis/química , AlgoritmosRESUMO
Vinegar is renowned for its benefits to human health due to the presence of antioxidants and bioactive components. Firstly, this study optimized the production conditions of ultrasound-treated strawberry vinegar (UT-SV), known for its high consumer appeal. The sensory properties of UT-SV were optimized by response surface methodology (RSM) to create the most appreciated strawberry vinegar. Secondly, various quality parameters of conventional strawberry vinegar (C-SV), UT-SV, and thermally pasteurized strawberry vinegar (P-SV) samples were compared. RSM was employed to craft the best strawberry vinegar based on consumers ratings of UT-SV. Sensory characteristics, bioactive values, phenolic contents, and organic acid contents of C-SV, UT-SV, and P-SV samples were assessed. Through optimization, the ultrasound parameters of the independent variables were determined as 5.3 min and 65.5 % amplitude. The RSM modeling levels exhibited high agreement with pungent sensation at 98.06 %, aromatic intensity at 98.98 %, gustatory impression at 99.17 %, and general appreciation at 99.26 %, respectively. Bioactive components in UT-SV samples increased after ultrasound treatment compared to C-SV and P-SV samples. Additionally, the amount of malic acid, lactic acid, and oxalic acid increased after ultrasound treatment compared to C-SV samples. Ultimately, UT-SV with high organoleptic properties was achieved. The ultrasound treatment positively impacted the bioactive values, phenolic and organic acid content, leading to the development of a new and healthy product.
Assuntos
Ácido Acético , Fragaria , Fragaria/química , Ácido Acético/química , Ácido Acético/análise , Ondas Ultrassônicas , Paladar , Fenóis/análiseRESUMO
Bee bread (perga) is a natural bee product formed by the fermentation of the pollen collected by bees via lactic acid bacteria and yeasts. This study aims to determine the bioactive compounds, amino acid, sugar, and organic acid profile of bee bread samples collected from the Ardahan province of Türkiye. The highest total phenolic, total flavonoid, and DPPH values in bee bread samples were determined as 18.35 mg GAE/g, 2.82 mg QE/g, and 3.90 mg TEAC/g, respectively. Among phenolic compounds, gallic acid had the highest value at 39.97 µ/g. While all essential amino acids except tryptophan were detected in the samples, aspartic acid was the most dominant, followed by pyrroline and glutamic acid. Among sugars, fructose was seen at the highest level. Succinic acid, among organic acids, had the highest amount at 73.63 mg/g. Finally, all the data were subjected to a principal components analysis (PCA). Bee bread samples were grouped according to the analysis results of the districts they were collected from. This study provides information about the bioactive components and some chemical properties of bee bread, a natural product that has been the subject of recent research. It also contains essential data for future functional food production.
RESUMO
Grape juice is a widely consumed fruit due to its bioactive compounds, minerals, and aroma components. Our objective was to investigate ultrasound treatment of black grape juice affects its bioactive components due to using response surface methodology (RSM) and artificial neural network (ANN) optimization. At the same time, mineral components, sugar components, organic acids, and volatile aroma profiles were compared in black grape juice treated with thermal and ultrasound pasteurization. ANN showed superior predictive values (>99%) to RSM. Optimal combinations were obtained at 40 °C, 12 min, and 65% amplitude for thermosonication. Under these conditions, phenolic, flavonoid, antioxidant activity, and anthocyanin values were 822.80 mg GAE/L, 97.50 mg CE/L, 24.51 mmol Trolox/L, and 368, 81 mg of mv-3-glu/L, respectively. Thermosonicated grape juice (TT-BGJ) was tested against black grape juice (P-BGJ) produced with conventional thermal methods. This study investigated the effects of thermal pasteurization and thermosonication on black grape juice bioactive compounds and minerals, aroma profile, and sensory evaluation. Thermosonication affected the aroma profile less, 329.98 µg/kg (P-BGJ) and 495.31 µg/kg (TT-BGJ). TT-BGJ was detected to contain seven different mineral elements (Mn, K, Fe, Mg, Cu, Zn, and Na). Thermosonication caused an increase in Fe, Zn, Mn, and K minerals. Panelists generally liked the TT-BGJ sample. These results suggest that the thermosonication process may potentially replace the traditional black grape juice processing thermal process.
RESUMO
The hawthorn fruit, a member of the Rosaceae family, is a medicinal plant with numerous therapeutic properties. It has a wide range of variants, with Crataegus tanacetifolia being the most widely recognized species in the world. The hawthorn fruit has various biological activities, including anti-inflammatory, antibacterial, antioxidant, immune-modulating, and anti-carcinogenic properties. This study focused on improving the antioxidant activity of hawthorn vinegar via different methods. We also aimed to investigate the influence of its hepatic antioxidant abilities on health and extend the shelf life of the vinegar. In the study, the vinegar was produced from the hawthorn fruit, and thermal pasteurization and ultrasound techniques were applied. A total of 56 female adult Wistar-Albino rats were allocated into seven groups and administered hawthorn fruit vinegar via oral gavage on a daily basis. The experimental groups included rats treated with pasteurized vinegar (HVP), ultrasound-treated rats (HVU), and an untreated group that received regular vinegar (HVN) at two different dosage levels (0.5 and 1 mL/kg). The SOD, MDA, and CAT antioxidant levels were measured using the ELISA method in plasma and liver tissue samples. The total plasma cholesterol, triglyceride, HDL, LDL, AST, and ALT values were quantified using commercially available kits. The levels of SOD and CAT in the plasma and liver were found to be significantly higher in the HVU1 group compared to all other groups. Furthermore, the HVU1 cohort exhibited the highest HDL value in plasma. The plasma LDL levels were comparably low in both the thermal-pasteurized and ultrasound-treated groups. There were significant expressions of both CAT and SOD in the liver tissues of the HVU groups (analyzed immunohistochemically). These results indicated that hawthorn vinegar administration with 1 mL/kg in group HVU1 could significantly enhance antioxidant capacity in the liver and, consequently, overall health. It can be suggested that the possible therapeutic effects of hawthorn vinegar may boost its antioxidant capabilities and contribute to an overall improvement in quality of life.
RESUMO
Poppy is an important edible plant containing bioactive components. This study aimed to produce good-tasting poppy sherbet by determining the content using a response surface methodology (RSM). At the same time, bioactive components, phenolic compounds, and color properties were investigated in optimum poppy sherbet during storage; 0.26 g of dried corn poppy flowers, 0.15 g of citric acid, and 4.29 g of sucrose values were the most promising, achieving high scores for color, smell, taste, and general acceptance from sensory properties (sensory score of 8.55 for color; 7.19 for smell; 8.38 for taste; 7.98 for general acceptability). A total of nine polyphenols were detected in the optimum poppy sherbet sample; gallic acid was the most common. There was no statistically significant difference between the samples stored on the 0th and 30th days regarding gallic acid content (23.886 ± 0.164 µg/mL, 23.403 ± 0.343 µg/mL) and protocatechuic acid (1.146 ± 0.048 µg/mL, 1.047 ± 0.038 µg/mL). Total flavonoid contents (TFC), total phenolic contents (TPC), CUPRAC (cupric ion reducing antioxidant capacity), DPPH (e free radical diphenylpicrylhydrazyl), total monomeric anthocyanin (TAC), and color values were found to decrease as the storage period increased. It was considered that a highly palatable and rich bioactive component product could be obtained.
RESUMO
Thermosonication is a process that can be used as an alternative to thermal pasteurization by combining mild temperature and ultrasound treatments. This study evaluated the effects of verjuice on the thermosonication process and its bioactive values modeled with the RSM (response surface method). The bioactive components of verjuice were found to increase with high predictive values. Additionally, the presence and amounts of 20 free amino acids in C-VJ (untreated verjuice), P-VJ (thermally pasteurized verjuice) and TS-VJ (thermosonicated verjuice) samples were investigated. Significant (p < 0.05) differences were detected among C-VJ, P-VJ and TS-VJ samples in all free amino acid values except methionine. Although 17 free amino acids were detected at various concentrations, glycine, taurine and cystine were not found in any samples. Thirteen phenolic filters in C-VJ, P-VJ and TS-VJ samples were also examined in this study. Eight phenolic donors with various abilities were detected in the C-VJ sample, along with nine phenolic acceptors in the P-VJ sample and eleven phenolic contents in the TS-VJ sample. The content of phenolic products in the TS-VJ sample increased by 37.5% compared to the C-VJ techniques and by 22.22% compared to the P-VJ techniques. Thermosonication did not significantly affect color and physiochemical values. Panelists generally appreciated the effects of thermosonication. It is concluded that the thermosonication process is a good alternative to thermal pasteurization. The results of this study provide essential data for future in vivo studies and show that the bioactive values of verjuice can be increased by using the thermosonication process.
RESUMO
Honey is a natural food substance considered among functional foods due to its positive effect on human health. Quality of honey is significantly influenced by environmental conditions and botanical origin. This study aimed to determine the element content in honey from Kars, Turkey, as well as the bioactive compounds and certain physicochemical and biochemical properties such as hydroxymethylfurfural (HMF) and color in a chemometric approach. In this study, a total of 41 local honey samples were analyzed. The levels of elements Al, As, B, Cd, Cr, Cu, Fe, Mg, Zn, and Pb were determined by inductively coupled plasma optical emission spectrophotometer (ICP-OES). The mean concentrations of the elements in the samples were identified as 3.09, 0.64, 59.07, 0.02, 0.14, 0.17, 1.76, 9.32, 0.78, and 0.33 µg/g for Al, As, B, Cd, Cr, Cu, Fe, Mg, Zn, and Pb, respectively. The mean bioactive compounds of the honey samples were determined as phenolic content (19.74 mg GAE/100 g), flavonoid content (4.47 mg CE/100 mg), and DPPH (49.08% inhibition). The HMF levels of all samples conformed to the honey standards of the Codex Alimentarius and Turkish Food Codex. HMF was not negatively correlated with the other color parameters except for the a* (redness or greenness) value. This study showed that clustering analysis (CA) and principal component analysis (PCA) are useful for distinguishing the originality of honey samples by using element content, bioactive properties, HMF, and color and were useful in defining the Kars honey type.
Assuntos
Mel , Humanos , Mel/análise , Cádmio , Quimiometria , ChumboRESUMO
Gilaburu (Viburnum opulus L.) is an important fruit that has been studied in recent years due to its phytochemicals and health benefits. In this study, traditionally produced vinegar made from gilaburu fruit (C-GV) was evaluated. Vinegar with higher levels of bioactive components optimized by response surface methodology (RSM) was also produced using ultrasound (UT-GV). The maximum optimization result for the bioactive components was achieved at 14 min and 61.2 amplitude. The effectiveness of thermal pasteurization (P-GV) on gilaburu vinegar was evaluated. An increase was detected for every organic acid with ultrasound treatment. In the UT-GV and C-GV samples, arabinose was present, which is useful for stimulating the immune system. Gilaburu vinegar samples contained 29-31 volatile compounds. The smallest amount of volatile compounds was found in P-GV (1280.9 µg/kg), and the largest amounts of volatile compounds were found in C-GV (1566.9 µg/kg) and UT-GV (1244.10 µg/kg). In the UT-GV sample, Fe was increased, but Ca, K, Mg, and Mn were decreased. A total of 15 polyphenols were detected in C-GV, P-GV, and UT-GV samples, and gallic acid was the most common. A total of 17 free amino acids were detected in gilaburu vinegar samples. Ultrasound provided enrichment in total phenolic compounds and total free amino acids. All three vinegar samples had good antimicrobial activity against pathogens. The efficacy of C-GV, P-GV, and UT-GV samples against colon and stomach cancer was determined, but there were no significant differences between them. As a result, ultrasound treatment is notable due to its antimicrobial and anticancer activity, especially for the enrichment of phenolic compounds and amino acids in gilaburu vinegar.
RESUMO
In recent years, non-thermal technology has been used for the enrichment of ultrasound bioactive components. For this purpose, it was applied to tomato vinegar and modeled with response surface methodology (RSM) and artificial neural network (ANN). At the end of the RSM, cupric reducing antioxidant capacity (68.64%), 1,1-diphenyl-2-picrylhydrazyl (62.47%), total flavonoid content (2.44 mg CE/mL), total phenolic content (12.22 mg GAE/mL), total ascorbic acid content (2.53 mg/100 mL) and total lycopene (5.44 µg/mL) were determined. The ANN model has higher prediction accuracy than RSM. The microstructure, microbiological properties, sensory analysis, ACE (angiotensin-converting-enzyme) inhibitor and antidiabetic effects of the ultrasound-treated tomato vinegar (UTV) (8.9 min and 74.5 amplitude), traditional tomato vinegar (TTV) and pasteurized tomato vinegar (PTV) samples were then evaluated. UTV was generally appreciated by the panelists. It was determined that the microbiological properties were affected by the ultrasound treatment. UTV was found to have more effective ACE inhibitor and antidiabetic properties than other vinegar samples. As a result, the bioactive components of tomato vinegar were enriched with ultrasound treatment and positive effects on health were determined.
RESUMO
Verjuice is one of the alternative fruit juices recently obtained from unripe grapes. In this study, the aim was primarily to optimize the process conditions for the enrichment of bioactive components in verjuice vinegar with ultrasound treatment. For this purpose, ultrasound treatment was applied to vinegar samples at different times (2, 4, 6, 8 and 10 min), different amplitudes (60%, 65%, 70%, 75% and 80%) and 26 kHz frequency. Total phenolic content (TPC), total flavonoid content (TFC), total antioxidant capacity (1,1-diphenyl-2-picrylhydrazyl (DPPH) and cupric reducing antioxidant capacity (CUPRAC) were evaluated for optimization (response surface methodology (RSM) and genetic algorithm (GA)) of process conditions. The sensory properties, microbiological quality and anticarcinogenic activity were then evaluated for the ultrasound-treated verjuice vinegar (UVV) (9.4 min and 68.7 amplitude result of RSM), traditional verjuice vinegar and pasteurized verjuice vinegar samples obtained from the optimization. At the end of the RSM optimization, CUPRAC (464.44 mg TEAC/mL), DPPH (0.694 mg TEAC/mL), TFC (70.85 mg CE/mL) and TPC (12.22 mg GAE/mL) were determined. RSM and GA results were found to be approximately the same. Analysis results showed that ultrasound-treated verjuice vinegar was enriched bioactive components compared to other samples. Verjuice vinegar showed anticarcinogenic effects. The UVV sample was generally appreciated in sensory evaluation. As a result, ultrasound treatment of verjuice vinegar was found to be successful.
RESUMO
In this study, the aim is to produce non-thermal vinegar by using red Uruset apples, which have high bioavailability among apple varieties. For this purpose, Uruset apple vinegar was produced and ultrasound at different times (2, 4, 6, 8 and 10 min) and different amplitudes (40%, 50%, 60%, 70%, and 80%); in addition, a 26 kHz frequency was applied to the samples. Total phenolic content (TPC), total flavonoid content (TFC), total antioxidant capacity (1,1-diphenyl- 2-picrylhydrazyl (DPPH) and cupric reducing antioxidant capacity (CUPRAC)), and color values were evaluated for the optimization of process conditions. At the same time, the differences between commercial apple vinegar (CV), pasteurized Uruset apple vinegar (PV), and a control (C) of untreated apple vinegar were investigated. Ultrasound treatment of Uruset apple vinegar was more successful for the enrichment of bioactive substances than the other samples. At the end of the study, the maximal optimization values for Uruset apple vinegar were 7.4 min and 62.2 amplitude. At the end of optimization, CUPRAC (0.69 mg TEAC/mL), DPPH (0.49 mg TEAC/mL), total flavonoid content (46.95 mg CE/L), and total phenolic content (124.25 mg GAE/L) were determined. As a result, ultrasound technology was successfully used for Uruset apple vinegar production.