Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Waste Manag Res ; : 734242X241241604, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600728

RESUMO

In this study, the thermal behaviours of Cannabis sativa (CS), coal and their five different blends at a heating rate (ß) of 10, 20, 30, 40 and 50°C min-1; the synergistic effects between CS and coal; and the distribution of gases formed during pyrolysis and combustion were investigated by using the thermogravimetric analysis/Fourier transform infrared spectrometer (TGA/FTIR) integrated system. The TG and DTG curves showed that the thermal decomposition of pyrolysis and combustion of all feedstocks at all ß values had three main decomposition stages. The synergistic effect was observed for DTGmax, mass loss (ML), or final residue (FR) at least once at a given ß of each blend; and the synergy was more effective for DTGmax and ML in pyrolysis than in combustion, whereas the opposite was true for FR. The lowest emissions of CO2, CH4, NOx and SO2 except CO during pyrolysis occurred at the blend of 0% CS + 100% Coal. However, the highest emissions of CO, CH4, NOx and SO2 except CO2 during combustion were observed at the blend of 80% CS + 20% Coal. The emissions of CO, CO2, NOx and SO2 from all samples during pyrolysis were lower than that of combustion, indicating that pyrolysis can be preferred due to its lower emission to the environment. Different structural properties of CS, coal and their blends caused different thermal behaviours, synergistic effects and gas products during pyrolysis and combustion by TGA/FTIR, suggesting detailed further investigation for upper-scale pyrolysis and combustion applications.

2.
Int J Biol Macromol ; 267(Pt 1): 131189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554924

RESUMO

The current study presents the synergistic effects of fibrillated cellulose (FC) and nickel-titanium (NiTi) alloy on the performance properties of smart composites. Epoxy resin was reinforced with loadings of 1 %, 3 %, and 5 % FC and 3 % NiTi. The composites were produced using the casting method. The morphological properties have been analyzed using scanning electron microscopy (SEM). For mechanical properties, yield strength, modulus of elasticity, hardness, and impact energy were determined. The corrosion rate was determined via electrochemical corrosion testing. The recovery test was used to measure the shape-memory of the composites. The self-healing of the artificial defect in the composites was observed using a thermal camera. The yield strength, modulus of elasticity, hardness, and impact energy of composites reinforced with 5 % FC and 3 % NiTi increased by 168.2 %, 290 %, 33.3 %, and 114.3 %, respectively, compared to pure epoxy resin. There has been a 56.3 % decrease in the corrosion rate. The percentage of composites that returned from the final state to the original state after a deformation was 4 %. Self-healing analysis revealed that the scratch defect in composites was healed after 24 h. It is concluded that smart composites can be used in the aviation and automotive industries.


Assuntos
Ligas , Celulose , Níquel , Titânio , Celulose/química , Níquel/química , Titânio/química , Ligas/química , Corrosão , Teste de Materiais , Resinas Epóxi/química , Dureza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA