Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39257974

RESUMO

Acute myeloid leukemia (AML) is the most prevalent type of leukemia in adults. Its heterogeneity, both between patients and within the same patient, is often a factor contributing to poor treatment outcomes. Despite advancements in AML biology and medicine in general, the standard AML treatment, the combination of cytarabine and daunorubicin, has remained the same for decades. Combination drug therapies are proven effective in achieving targeted efficacy while minimizing drug dosage and unintended side effects, a common problem for older AML patients. However, a systematic survey of the synergistic potential of drug-drug interactions in the context of AML pathology is lacking. Here, we examine the interactions between 15 commonly used cancer drugs across distinct AML cell lines and demonstrate that synergistic and antagonistic drug-drug interactions are widespread but not conserved across these cell lines. Notably, enasidenib and venetoclax, recently approved anticancer agents, exhibited the highest counts of synergistic interactions and the fewest antagonistic ones. In contrast, 6-Thioguanine, a purine analog, was involved in the highest number of antagonistic interactions. The interactions we report here cannot be attributed solely to the inherent natures of these three drugs, as each drug we examined was involved in several synergistic or antagonistic interactions in the cell lines we tested. Importantly, these drug-drug interactions are not conserved across cell lines, suggesting that the success of combination therapies might vary significantly depending on AML genotypes. For instance, we found that a single mutation in the TF1 cell line could dramatically alter drug-drug interactions, even turning synergistic interactions into antagonistic ones. Our findings provide a preclinical survey of drug-drug interactions, revealing the complexity of the problem.

2.
Cell Host Microbe ; 32(3): 396-410.e6, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38359828

RESUMO

Antibiotic resistance and evasion are incompletely understood and complicated by the fact that murine interval dosing models do not fully recapitulate antibiotic pharmacokinetics in humans. To better understand how gastrointestinal bacteria respond to antibiotics, we colonized germ-free mice with a pan-susceptible genetically barcoded Escherichia coli clinical isolate and administered the antibiotic cefepime via programmable subcutaneous pumps, allowing closer emulation of human parenteral antibiotic dynamics. E. coli was only recovered from intestinal tissue, where cefepime concentrations were still inhibitory. Strikingly, "some" E. coli isolates were not cefepime resistant but acquired mutations in genes involved in polysaccharide capsular synthesis increasing their invasion and survival within human intestinal cells. Deleting wbaP involved in capsular polysaccharide synthesis mimicked this phenotype, allowing increased invasion of colonocytes where cefepime concentrations were reduced. Additionally, "some" mutant strains exhibited a persister phenotype upon further cefepime exposure. This work uncovers a mechanism allowing "select" gastrointestinal bacteria to evade antibiotic treatment.


Assuntos
Antibacterianos , Escherichia coli , Humanos , Animais , Camundongos , Cefepima , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Trato Gastrointestinal/microbiologia , Polissacarídeos , Testes de Sensibilidade Microbiana , Mamíferos
3.
bioRxiv ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36711614

RESUMO

In vitro systems have provided great insight into the mechanisms of antibiotic resistance. Yet, in vitro approaches cannot reflect the full complexity of what transpires within a host. As the mammalian gut is host to trillions of resident bacteria and thus a potential breeding ground for antibiotic resistance, we sought to better understand how gut bacteria respond to antibiotic treatment in vivo . Here, we colonized germ-free mice with a genetically barcoded antibiotic pan-susceptible Escherichia coli clinical isolate and then administered the antibiotic cefepime via programmable subcutaneous pumps which allowed for closer emulation of human parenteral antibiotic pharmacokinetics/dynamics. After seven days of antibiotics, we were unable to culture E. coli from feces. We were, however, able to recover barcoded E. coli from harvested gastrointestinal (GI) tissue, despite high GI tract and plasma cefepime concentrations. Strikingly, these E. coli isolates were not resistant to cefepime but had acquired mutations â€" most notably in the wbaP gene, which encodes an enzyme required for the initiation of the synthesis of the polysaccharide capsule and lipopolysaccharide O antigen - that increased their ability to invade and survive within intestinal cells, including cultured human colonocytes. Further, these E. coli mutants exhibited a persister phenotype when exposed to cefepime, allowing for greater survival to pulses of cefepime treatment when compared to the wildtype strain. Our findings highlight a mechanism by which bacteria in the gastrointestinal tract can adapt to antibiotic treatment by increasing their ability to persist during antibiotic treatment and invade intestinal epithelial cells where antibiotic concentrations are substantially reduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA