Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051951

RESUMO

BACKGROUND AND AIMS: Cross talk between tumor cells and immune cells enables tumor cells to escape immune surveillance and dictate responses to immunotherapy. Previous studies have identified that downregulation of the glycolytic enzyme fructose-1,6-bisphosphate aldolase B (ALDOB) in tumor cells orchestrated metabolic programming to favor HCC. However, it remains elusive whether and how ALDOB expression in tumor cells affects the tumor microenvironment in HCC. APPROACH AND RESULTS: We found that ALDOB downregulation was negatively correlated with CD8 + T cell infiltration in human HCC tumor tissues but in a state of exhaustion. Similar observations were made in mice with liver-specific ALDOB knockout or in subcutaneous tumor models with ALDOB knockdown. Moreover, ALDOB deficiency in tumor cells upregulates TGF-ß expression, thereby increasing the number of Treg cells and impairing the activity of CD8 + T cells. Consistently, a combination of low ALDOB and high TGF-ß expression exhibited the worst overall survival for patients with HCC. More importantly, the simultaneous blocking of TGF-ß and programmed cell death (PD) 1 with antibodies additively inhibited tumorigenesis induced by ALDOB deficiency in mice. Further mechanistic experiments demonstrated that ALDOB enters the nucleus and interacts with lysine acetyltransferase 2A, leading to inhibition of H3K9 acetylation and thereby suppressing TGFB1 transcription. Consistently, inhibition of lysine acetyltransferase 2A activity by small molecule inhibitors suppressed TGF-ß and HCC. CONCLUSIONS: Our study has revealed a novel mechanism by which a metabolic enzyme in tumor cells epigenetically modulates TGF-ß signaling, thereby enabling cancer cells to evade immune surveillance and affect their response to immunotherapy.

2.
Hepatology ; 74(6): 3037-3055, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34292642

RESUMO

BACKGROUND AND AIMS: Insulin receptor (IR) transduces cell surface signal through phosphoinositide 3-kinase (PI3K)-AKT pathways or translocates to the nucleus and binds to the promoters to regulate genes associated with insulin actions, including de novo lipogenesis (DNL). Chronic activation of IR signaling drives malignant transformation, but the underlying mechanisms remain poorly defined. Down-regulation of fructose-1,6-bisphosphate aldolase (ALDO) B in hepatocellular carcinoma (HCC) is correlated with poor prognosis. We aim to study whether and how ALDOB is involved in IR signaling in HCC. APPROACH AND RESULTS: Global or liver-specific ALDOB knockout (L-ALDOB-/- ) mice were used in N-diethylnitrosamine (DEN)-induced HCC models, whereas restoration of ALDOB expression was achieved in L-ALDOB-/- mice by adeno-associated virus (AAV). 13 C6 -glucose was employed in metabolic flux analysis to track the de novo fatty acid synthesis from glucose, and nontargeted lipidomics and targeted fatty acid analysis using mass spectrometry were performed. We found that ALDOB physically interacts with IR and attenuates IR signaling through down-regulating PI3K-AKT pathways and suppressing IR nuclear translocation. ALDOB depletion or disruption of IR/ALDOB interaction in ALDOB mutants promotes DNL and tumorigenesis, which is significantly attenuated with ALDOB restoration in L-ALDOB-/- mice. Notably, attenuated IR/ALDOB interaction in ALDOB-R46A mutant exhibits more significant tumorigenesis than releasing ALDOB/AKT interaction in ALDOB-R43A, whereas knockdown IR sufficiently diminishes tumor-promoting effects in both mutants. Furthermore, inhibiting phosphorylated AKT or fatty acid synthase significantly attenuates HCC in L-ALDOB-/- mice. Consistently, ALDOB down-regulation is correlated with up-regulation of IR signaling and DNL in human HCC tumor tissues. CONCLUSIONS: Our study reports a mechanism by which loss of ALDOB activates IR signaling primarily through releasing IR/ALDOB interaction to promote DNL and HCC, highlighting a potential therapeutic strategy in HCC.


Assuntos
Carcinogênese/genética , Frutose-Bifosfato Aldolase/metabolismo , Lipogênese/genética , Neoplasias Hepáticas Experimentais/genética , Receptor de Insulina/metabolismo , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Linhagem Celular Tumoral , Dietilnitrosamina/administração & dosagem , Regulação para Baixo , Ácidos Graxos/biossíntese , Frutose-Bifosfato Aldolase/genética , Regulação Neoplásica da Expressão Gênica , Lipidômica , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos Knockout , Fosforilação
3.
PLoS Biol ; 18(12): e3000803, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33275593

RESUMO

Loss of hepatic fructose-1, 6-bisphosphate aldolase B (Aldob) leads to a paradoxical up-regulation of glucose metabolism to favor hepatocellular carcinogenesis (HCC), but the upstream signaling events remain poorly defined. Akt is highly activated in HCC, and targeting Akt is being explored as a potential therapy for HCC. Herein, we demonstrate that Aldob suppresses Akt activity and tumor growth through a protein complex containing Aldob, Akt, and protein phosphatase 2A (PP2A), leading to inhibition of cell viability, cell cycle progression, glucose uptake, and metabolism. Interestingly, Aldob directly interacts with phosphorylated Akt (p-Akt) and promotes the recruitment of PP2A to dephosphorylate p-Akt, and this scaffolding effect of Aldob is independent of its enzymatic activity. Loss of Aldob or disruption of Aldob/Akt interaction in Aldob R304A mutant restores Akt activity and tumor-promoting effects. Consistently, Aldob and p-Akt expression are inversely correlated in human HCC tissues, and Aldob down-regulation coupled with p-Akt up-regulation predicts a poor prognosis for HCC. We have further discovered that Akt inhibition or a specific small-molecule activator of PP2A (SMAP) efficiently attenuates HCC tumorigenesis in xenograft mouse models. Our work reveals a novel nonenzymatic role of Aldob in negative regulation of Akt activation, suggesting that directly inhibiting Akt activity or through reactivating PP2A may be a potential therapeutic approach for HCC treatment.


Assuntos
Carcinoma Hepatocelular/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/fisiopatologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , China , Frutose-Bifosfato Aldolase/biossíntese , Frutose-Bifosfato Aldolase/genética , Glucose/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Redox Biol ; 37: 101701, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32863234

RESUMO

The well-documented anticarcinogenic properties of natural polyphenolic proanthocyanidins (OPC) have been primarily attributed to their antioxidant and anti-inflammatory potency. Emerging evidence suggests that OPC may target canonical oncogenic pathways, including PI3K/AKT; however, the underlying mechanism and therapeutic potential remain elusive. Here we identify that proanthocyanidin B2 (OPC-B2) directly binds and inhibits AKT activity and downstream signalling, thereby suppressing tumour cell proliferation and metabolism in vitro and in a xenograft and diethyl-nitrosamine (DEN)-induced hepatocellular carcinoma (HCC) mouse models. We further find that OPC-B2 binds to the catalytic and regulatory PH domains to lock the protein in a closed conformation, similar to the well-studied AKT allosteric inhibitor MK-2206. Molecular docking and dynamic simulation suggest that Lys297 and Arg86 are critical sites of OPC-B2 binding; mutation of Lys297 or Arg86 to alanine completely abolishes the antitumor effects of OPC-B2 but not MK-2206. Together, our study reveals that OPC-B2 is a novel allosteric AKT inhibitor with potent anti-tumour efficacy beyond its antioxidant and anti-inflammatory properties.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proantocianidinas , Animais , Apoptose , Carcinogênese , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proantocianidinas/farmacologia , Proteínas Proto-Oncogênicas c-akt
5.
Redox Biol ; 32: 101495, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171725

RESUMO

Autophagy is an evolutionarily conserved catabolic process that recycles proteins and organelles in a lysosome-dependent manner and is induced as an alternative source of energy and metabolites in response to diverse stresses. Inhibition of autophagy has emerged as an appealing therapeutic strategy in cancer. However, it remains to be explored whether autophagy inhibition is a viable approach for the treatment of hepatocellular carcinoma (HCC). Here, we identify that water-soluble yeast ß-D-glucan (WSG) is a novel autophagy inhibitor and exerts significant antitumour efficacy on the inhibition of HCC cells proliferation and metabolism as well as the tumour growth in vivo. We further reveal that WSG inhibits autophagic degradation by increasing lysosomal pH and inhibiting lysosome cathepsins (cathepsin B and cathepsin D) activities, which results in the accumulation of damaged mitochondria and reactive oxygen species (ROS) production. Furthermore, WSG sensitizes HCC cells to apoptosis via the activation of caspase 8 and the transfer of truncated BID (tBID) into mitochondria under nutrient deprivation condition. Of note, administration of WSG as a single agent achieves a significant antitumour effect in xenograft mouse model and DEN/CCl4 (diethylnitrosamine/carbon tetrachloride)-induced primary HCC model without apparent toxicity. Our studies reveal, for the first time, that WSG is a novel autophagy inhibitor with significant antitumour efficacy as a single agent, which has great potential in clinical application for liver cancer therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Apoptose , Autofagia , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Glucanos , Neoplasias Hepáticas/tratamento farmacológico , Lisossomos , Camundongos , Espécies Reativas de Oxigênio , Saccharomyces cerevisiae
6.
Nat Cancer ; 1(7): 735-747, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-35122041

RESUMO

Metabolic reprogramming is a core hallmark of cancer but it remains poorly defined in hepatocellular carcinogenesis (HCC). Here we show that hepatic aldolase B (Aldob) suppresses HCC by directly binding and inhibiting the rate-limiting enzyme in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD). A stage-dependent decrease of Aldob and increase of G6PD in human tumors are correlated with poor prognosis for patients with HCC. Global or liver-specific Aldob knockout promotes tumorigenesis in mice through enhancing G6PD activity and pentose phosphate pathway metabolism, whereas pharmacological inhibition or genetic knockdown of G6PD suppresses HCC. Consistently, restoration of Aldob in Aldob knockout mice attenuates tumorigenesis. We further demonstrate that Aldob potentiates p53-mediated inhibition of G6PD in an Aldob-G6PD-p53 complex. This scaffolding effect is independent of Aldob enzymatic activity. Together, our study reveals a new mode of metabolic reprogramming in HCC due to the loss of Aldob, suggesting a potential therapeutic strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Transformação Celular Neoplásica , Frutose-Bifosfato Aldolase/genética , Glucosefosfato Desidrogenase/genética , Humanos , Neoplasias Hepáticas/genética , Camundongos , Via de Pentose Fosfato/genética , Proteína Supressora de Tumor p53/genética
7.
Redox Biol ; 21: 101069, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30576926

RESUMO

Dysregulation of cholesterol metabolism represents one of the major risk factors for atherosclerotic cardiovascular disease (CVD). Oxidized cholesterol esters (oxCE) in low-density lipoprotein (LDL) have been implicated in CVD but the underlying mechanisms remain poorly defined. We use a targeted lipidomic approach to demonstrate that levels of oxCEs in human plasma are associated with different types of CVD and significantly elevated in patients with myocardial infarction. We synthesized a major endogenous cholesterol ester hydroperoxide (CEOOH), cholesteryl-13(cis, trans)-hydroperoxy-octadecadienoate (ch-13(c,t)-HpODE) and show that this endogenous compound significantly increases plasma cholesterol level in mice while decrease cholesterol levels in mouse liver and peritoneal macrophages, which is primarily due to the inhibition of cholesterol uptake in macrophages and liver. Further studies indicate that inhibition of cholesterol uptake by ch-13(c,t)-HpODE in macrophages is dependent on LXRα-IDOL-LDLR pathway, whereas inhibition on cholesterol levels in hepatocytes is dependent on LXRα and LDLR. Consistently, these effects on cholesterol levels by ch-13(c,t)-HpODE are diminished in LDLR or LXRα knockout mice. Together, our study provides evidence that elevated plasma cholesterol levels by CEOOHs are primarily due to the inhibition of cholesterol uptake in the liver and macrophages, which may play an important role in the pathogenesis of CVD.


Assuntos
Ésteres do Colesterol/metabolismo , Colesterol/metabolismo , Hepatócitos/metabolismo , Macrófagos/metabolismo , Idoso , Animais , Biomarcadores , Doenças Cardiovasculares , Ésteres do Colesterol/genética , Cromatografia Líquida , Modelos Animais de Doenças , Feminino , Humanos , Metabolismo dos Lipídeos , Receptores X do Fígado/metabolismo , Masculino , Espectrometria de Massas , Metaboloma , Camundongos , Pessoa de Meia-Idade , Receptores de LDL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA